【題目】材料一:如圖1,由課本91頁例2畫函數(shù)y=﹣6xy=﹣6x+5可知,直線y=﹣6x+5可以由直線y=﹣6x向上平移5個(gè)單位長度得到由此我們得到正確的結(jié)論一:在直線L1y=K1x+b1與直線L2y=K2x+b2中,如果K1=K2 b1≠b2 ,那么L1L2,反過來,也成立.

材料二:如圖2,由課本92頁例3畫函數(shù)y2x1y=﹣0.5x+1可知,利用所學(xué)知識一定能證出這兩條直線是互相垂直的.由此我們得到正確的結(jié)論二:在直線L1y=k1x+b1 L2y=k2x+b2 中,如果k1·k2=-1那么L1L2,反過來,也成立

應(yīng)用舉例

已知直線y=﹣x+5與直線ykx+2互相垂直,則﹣k=﹣1.所以k6

解決問題

(1)請寫出一條直線解析式______,使它與直線yx3平行.

(2)如圖3,點(diǎn)A坐標(biāo)為(1,0),點(diǎn)P是直線y=﹣3x+2上一動點(diǎn),當(dāng)點(diǎn)P運(yùn)動到何位置時(shí),線段PA的長度最?并求出此時(shí)點(diǎn)P的坐標(biāo).

【答案】1yx;(2)當(dāng)線段PA的長度最小時(shí),點(diǎn)P的坐標(biāo)為.

【解析】

1)由兩直線平行可得出k1k21、b1b2=﹣3,取b10即可得出結(jié)論;

2)過點(diǎn)AAP⊥直線y=﹣3x+2于點(diǎn)P,此時(shí)線段PA的長度最小,由兩直線平行可設(shè)直線PA的解析式為yx+b,由點(diǎn)A的坐標(biāo)利用待定系數(shù)法可求出直線PA的解析式,聯(lián)立兩直線解析式成方程組,再通過解方程組即可求出:當(dāng)線段PA的長度最小時(shí),點(diǎn)P的坐標(biāo).

.解:(1)∵兩直線平行,

k1k21,b1b2=﹣3,

∴該直線可以為yx

故答案為:yx

2)過點(diǎn)AAP⊥直線y=﹣3x+2于點(diǎn)P,此時(shí)線段PA的長度最小,如圖所示.

∵直線PA與直線y=﹣3x+2垂直,

∴設(shè)直線PA的解析式為yx+b

∵點(diǎn)A(﹣10)在直線PA上,

×(﹣1+b0,解得:b,

∴直線PA的解析式為yx+

聯(lián)立兩直線解析式成方程組,得:

,解得:

∴當(dāng)線段PA的長度最小時(shí),點(diǎn)P的坐標(biāo)為(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初一(1)班針對你最喜愛的課外活動項(xiàng)目對全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個(gè)活動項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.

男、女生所選項(xiàng)目人數(shù)統(tǒng)計(jì)表

項(xiàng)目

男生(人數(shù))

女生(人數(shù))

機(jī)器人

7

9

3D打印

m

4

航模

2

2

其他

5

n

根據(jù)以上信息解決下列問題:

(1)m=_____,n=_____;

(2)扇形統(tǒng)計(jì)圖中機(jī)器人項(xiàng)目所對應(yīng)扇形的圓心角度數(shù)為_____°;

(3)從選航模項(xiàng)目的4名學(xué)生中隨機(jī)選取2名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的2名學(xué)生中恰好有1名男生、1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:把RtABCRtDEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上,∠ACB=EDF=90°,DEF=45°,AC=8cm,BC=6cm,EF=9cm.如圖(2),DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CBABC勻速移動,在DEF移動的同時(shí),點(diǎn)PABC的頂點(diǎn)B出發(fā),以2cm/s的速度沿BA勻速移動,當(dāng)DEF的頂點(diǎn)D移動到AC邊上時(shí),DEF停止移動,點(diǎn)P也隨之停止移動,DEAC相交于點(diǎn)Q,連接PQ,設(shè)移動時(shí)間為t(s)(0<t<4.5).

解答下列問題:

(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?

(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求yt之間的函數(shù)關(guān)系式,是否存在某一時(shí)刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由;

(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的面積為10cm2,它的兩條對角線交于點(diǎn)O1,以ABAO1為兩鄰邊作平行四邊形ABC1O1,平行四邊形ABC1O1的對角線交于點(diǎn)O2,同樣以AB、AO2為兩鄰邊作平行四邊形ABC2O2,依此類推,則平行四邊形ABCnOn的面積為( )

A. cm2B. cm2C. cm2D. cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC,ACB=90°,DAB的中點(diǎn),四邊形BCED為平行四邊形,DE,AC相交于F.連接DC,AE.

(1)試確定四邊形ADCE的形狀,并說明理由

(2)AB=16,AC=12,求四邊形ADCE的面積.

(3)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE為正方形?請給予證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)超市第一次用6000元購進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表:(注:獲利=售價(jià)﹣進(jìn)價(jià))

進(jìn)價(jià)(元/件)

22

30

售價(jià)(元/件)

29

40

(1)該超市購進(jìn)甲、乙兩種商品各多少件?

(2)該超市將第一次購進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

(3)該超市第二次以第一次的進(jìn)價(jià)又購進(jìn)甲、乙兩種商品,其中甲商品的件數(shù)不變,乙商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤比第一次獲得的總利潤多180元,求第二次乙商品是按原價(jià)打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOD160°,OBOC、OMON是∠AOD內(nèi)的射線.

(1)如圖1,若OM平分∠AOB,ON平分∠BOD.當(dāng)OB繞點(diǎn)O在∠AOD內(nèi)旋轉(zhuǎn)時(shí),求∠MON的大;

(2)如圖2,若∠BOC20°OM平分∠AOC,ON平分∠BOD.當(dāng)∠BOC繞點(diǎn)O在∠AOD內(nèi)旋轉(zhuǎn)時(shí),求∠MON的大;

(3)(2)的條件下,若∠AOB10°,當(dāng)∠B0C在∠AOD內(nèi)繞著點(diǎn)O2/秒的速度逆時(shí)針旋轉(zhuǎn)t秒時(shí),∠AOMDON.t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩塊大小不等的等腰直角三角形按圖1放置,點(diǎn)為直角頂點(diǎn),點(diǎn)上,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)角度,連接、.

1)若,則當(dāng) 時(shí),四邊形是平行四邊形;

2)圖2,若于點(diǎn),延長于點(diǎn),求證:的中點(diǎn);

3)圖3,若點(diǎn)的中點(diǎn),連接并延長交于點(diǎn),求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線(k為常數(shù),且k>0)與x軸的交點(diǎn)為A、B,與y軸的交點(diǎn)為C,經(jīng)過點(diǎn)B的直線與拋物線的另一個(gè)交點(diǎn)為D.

(1)若點(diǎn)D的橫坐標(biāo)為x= -4,求這個(gè)一次函數(shù)與拋物線的解析式;

(2)若直線m平行于該拋物線的對稱軸,并且可以在線段AB間左右移動,它與直線BD和拋物線分別交于點(diǎn)E、F,求當(dāng)m移動到什么位置時(shí),EF的值最大,最大值是多少?

(3)問原拋物線在第一象限是否存在點(diǎn)P,使得APB∽△ABC?若存在,請求出這時(shí)k的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案