【題目】如圖1,在ABC中,AB=AC, D為直線BC上一動點(不與BC重合),在AD的右側作ADE,使得AE=AD,DAE=∠BAC,連接CE

1)當D在線段BC上時,求證:△BAD ≌△CAE;

2)當點D運動到何處時,ACDE,并說明理由.

【答案】1)見解析;(2)當D運動到BC中點時,ACDE,理由見解析

【解析】

1)根據(jù)SAS即可證明;

2)當點D運動到BC中點時,AC⊥DE,由AB=AC∠1=∠2,結合∠1=∠3,得出∠2=∠3.根據(jù)AE=AD,即可得.

1∵∠DAE=∠BAC

∴∠BAD=∠CAE

又∵AB=AC,AD=AE

∴△BAD ≌△CAESAS).

2)當D運動到BC中點時,AC⊥DE

∵DBC中點,AB=AC ,∴∠1=∠2

∵△BAD ≌△CAE,∴∠1=∠3∴∠2=∠3

∵AD=AE,∴AC⊥DE

D運動到BC中點時,AC⊥DE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABC90°,ADBC,以B為圓心,BC長為半徑畫弧,與射線AD相交于點E,連接BE,過點CCFBE,垂足為F.若AB6,BC10,則EF的長為___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點的邊上的一點,過點,,為垂足,再過點,交于點,且

1)求證:;

2)求證:垂直平分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了節(jié)省材料,某水產養(yǎng)殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為80m的圍網(wǎng)在水庫中圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等.設BC的長度為xm,矩形區(qū)域ABCD的面積為ym2

1)求yx之間的函數(shù)關系式,并注明自變量x的取值范圍;

2x為何值時,y有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是O的內接四邊形,BC的延長線與AD的延長線交于點E,且DC=DE.

(1)求證:A=AEB;

(2)連接OE,交CD于點F,OECD,求證:ABE是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,扇形OAB中,AOB=100°,OA=12,C是OB的中點,CDOB交于點D,以OC為半徑的交OA于點E,則圖中陰影部分的面積是(  )

A. 12π+18 B. 12π+36 C. 6π+18 D. 6π+36

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l表示一條公路,點A, B表示兩個村莊.現(xiàn)要在公路l上按以下要求建一個加油站,請在圖中用點P表示加油站的位置. (不寫作法,保留作圖痕跡)

(1)在圖甲中標出加油站的位置,使得加油站到A, B兩個村莊的距離相等.

(2)在圖乙中標出加油站的位置,使得加油站到A, B兩個村莊的距離之和最小,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4.若用想x,y表示直角三角形的兩直角邊(x>y),則下列四個說法:①,②x-y=2,③2xy+4=49,④x+y=9其中說法正確的是( )

A. ①②B. ①②③④C. ②④D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,C是線段BE上一點,以BC、CE為邊分別在BE的同側作等邊ABC和等邊DCE,連結AE、BD.

(1)求證:BD=AE;

(2)如圖2,若M、N分別是線段AE、BD上的點,且AM=BN,請判斷CMN的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案