【題目】已知拋物線C1:y=ax2+4ax+4a+b(a≠0,b>0)的頂點(diǎn)為M,經(jīng)過原點(diǎn)O且與x軸另一交點(diǎn)為A.
(1)求點(diǎn)A的坐標(biāo);
(2)若△AMO為等腰直角三角形,求拋物線C1的解析式;
(3)現(xiàn)將拋物線C1繞著點(diǎn)P(m,0)旋轉(zhuǎn)180°后得到拋物線C2,若拋物線C2的頂點(diǎn)為N,當(dāng)b=1,且頂點(diǎn)N在拋物線C1上時(shí),求m的值.
【答案】(1)、(-4,0);(2)、y=﹣x2﹣2x;(3)、m=﹣2+或﹣2﹣
【解析】
試題分析:(1)、由拋物線經(jīng)過原點(diǎn)可知當(dāng)x=0時(shí),y=0,由此可得關(guān)于x的一元二次方程,解方程即可求出拋物線x軸另一交點(diǎn)坐標(biāo);(2)、由△AMO為等腰直角三角形,拋物線的頂點(diǎn)為M,可求出b的值,再把原點(diǎn)坐標(biāo)(0,0)代入求出a的值,即可求出拋物線C1的解析式;(3)、由b=1,易求線拋物線C1的解析式,設(shè)N(n,﹣1),再由點(diǎn)P(m,0)可求出n和m的關(guān)系,當(dāng)頂點(diǎn)N在拋物線C1上可把N的坐標(biāo)代入拋物線即可求出m的值.
試題解析:(1)、∵拋物線C1:y=ax2+4ax+4a+b(a≠0,b>0)經(jīng)過原點(diǎn)O, ∴0=4a+b,
∴當(dāng)ax2+4ax+4a+b=0時(shí),則ax2+4ax=0, 解得:x=0或﹣4,∴拋物線與x軸另一交點(diǎn)A坐標(biāo)是(﹣4,0);
(2)、∵拋物線C1:y=ax2+4ax+4a+b=a(x+2)2+b(a≠0,b>0),(如圖1) ∴頂點(diǎn)M坐標(biāo)為(﹣2,b),
∵△AMO為等腰直角三角形, ∴b=2, ∵拋物線C1:y=ax2+4ax+4a+b=a(x+2)2+b過原點(diǎn),
∴a(0+2)2+2=0, 解得:a=﹣, ∴拋物線C1:y=﹣x2﹣2x;
(3)、∵b=1,拋物線C1:y=ax2+4ax+4a+b=a(x+2)2+b過原點(diǎn),(如圖2) ∴a=﹣,
∴y=﹣(x+2)2+1=﹣x2﹣x, 設(shè)N(n,﹣1),又因?yàn)辄c(diǎn)P(m,0), ∴n﹣m=m+2,
∴n=2m+2 即點(diǎn)N的坐標(biāo)是(2m+2,﹣1), ∵頂點(diǎn)N在拋物線C1上, ∴﹣1=﹣(2m+2+2)2+1,
解得:m=﹣2+或﹣2﹣.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】能說明命題“若a>b,則3a>2b“為假命題的反例為( 。
A.a=3,b=2B.a=﹣2,b=﹣3C.a=2,b=3D.a=﹣3,b=﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),∠OAB=30度.
(1)求∠APB的度數(shù);
(2)當(dāng)OA=3時(shí),求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鞋商在進(jìn)行市場占有率的調(diào)查時(shí),他最關(guān)注的是(。
A. 鞋型號的平均數(shù) B. 鞋型號的眾數(shù)
C. 鞋型號的中位數(shù) D. 最小的鞋型號
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分線相交于點(diǎn)O,則∠COD的度數(shù)是( )
A.110°
B.100°
C.90°
D.80°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com