【題目】如圖,在半徑為4的⊙O中,CD為直徑,AB⊥CD且過(guò)半徑OD的中點(diǎn),點(diǎn)E為⊙O上一動(dòng)點(diǎn),CF⊥AE于點(diǎn)F.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng)為( )
A. B. C. D.
【答案】D
【解析】
連接AC,AO,由AB⊥CD,利用垂徑定理得到G為AB的中點(diǎn),由中點(diǎn)的定義確定出OG的長(zhǎng),在直角三角形AOG中,由AO與OG的長(zhǎng),利用勾股定理求出AG的長(zhǎng),進(jìn)而確定出AB的長(zhǎng),由CO+GO求出CG的長(zhǎng),在直角三角形AGC中,利用勾股定理求出AC的長(zhǎng),由CF垂直于AE,得到三角形ACF始終為直角三角形,點(diǎn)F的運(yùn)動(dòng)軌跡為以AC為直徑的半徑,如圖中紅線(xiàn)所示,當(dāng)E位于點(diǎn)B時(shí),CG⊥AE,此時(shí)F與G重合;當(dāng)E位于D時(shí),CA⊥AE,此時(shí)F與A重合,可得出當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng),在直角三角形ACG中,利用銳角三角函數(shù)定義求出∠ACG的度數(shù),進(jìn)而確定出所對(duì)圓心角的度數(shù),再由AC的長(zhǎng)求出半徑,利用弧長(zhǎng)公式即可求出的長(zhǎng),即可求出點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng).
連接AC,AO.
∵AB⊥CD,∴G為AB的中點(diǎn),即AG=BG=AB.
∵⊙O的半徑為4,弦AB⊥CD且過(guò)半徑OD的中點(diǎn),∴OG=2,∴在Rt△AOG中,根據(jù)勾股定理得:AG==2,∴AB=2AG=4.
又∵CG=CO+GO=4+2=6,∴在Rt△AGC中,根據(jù)勾股定理得:AC==4.
∵CF⊥AE,∴△ACF始終是直角三角形,點(diǎn)F的運(yùn)動(dòng)軌跡為以AC為直徑的半圓,當(dāng)E位于點(diǎn)B時(shí),CG⊥AE,此時(shí)F與G重合;當(dāng)E位于D時(shí),CA⊥AE,此時(shí)F與A重合,∴當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng).在Rt△ACG中,tan∠ACG==,∴∠ACG=30°,∴所對(duì)圓心角的度數(shù)為60°.
∵直徑AC=4,∴的長(zhǎng)為=π,則當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng)為π.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,已知線(xiàn)段,以為一邊作等邊 (尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);
(2)如圖②,已知,,,分別以為邊作等邊和等邊,連接,求的最大值;
(3)如圖③,已知,,,,為內(nèi)部一點(diǎn),連接,求出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AB=10 cm,BC=6 cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),以每秒2 cm的速度按C→A的路徑運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)出發(fā)2秒時(shí),△ABP的面積為 cm2;
(2)當(dāng)t為何值時(shí),BP恰好平分∠ABC?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)當(dāng)天,小明帶了四個(gè)粽子(除味道不同外,其它均相同),其中兩個(gè)是大棗味的,另外兩個(gè)是火腿味的,準(zhǔn)備按數(shù)量平均分給小紅和小剛兩個(gè)好朋友.
(1)請(qǐng)你用樹(shù)狀圖或列表的方法表示小紅拿到的兩個(gè)粽子的所有可能性;
(2)請(qǐng)你計(jì)算小紅拿到的兩個(gè)粽子剛好是同一味道的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣x2﹣2x+3與x軸交于點(diǎn)A,B,把拋物線(xiàn)與線(xiàn)段AB圍成的圖形記為C1, 將Cl繞點(diǎn)B中心對(duì)稱(chēng)變換得C2, C2與x軸交于另一點(diǎn)C,將C2繞點(diǎn)C中心對(duì)稱(chēng)變換得C3, 連接C與C3的頂點(diǎn),則圖中陰影部分的面積為( )
A. 32 B. 24 C. 36 D. 48
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的中線(xiàn),E,F分別是AD和AD延長(zhǎng)線(xiàn)上的點(diǎn),且DE=DF,連接BF,CE,下列說(shuō)法:①△ABD 和△ACD面積相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正確的是( )
A. ①② B. ③⑤ C. ①③④ D. ①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,與的平分線(xiàn)交于點(diǎn),得;與的平分線(xiàn)相交于點(diǎn),得;……;與的平分線(xiàn)交于點(diǎn),要使的度數(shù)為整數(shù),則的最大值為( )
A.4B.5C.6D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:(1)b2﹣4ac>0;(2)abc>0;(3)8a+c>0;(4)6a+3b+c>0,其中正確的結(jié)論的個(gè)數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】工人師傅用一塊長(zhǎng)為10dm,寬為6dm的矩形鐵皮制作一個(gè)無(wú)蓋的長(zhǎng)方體容器,需要將四角各裁掉一個(gè)正方形.(厚度不計(jì))
(1)在圖中畫(huà)出裁剪示意圖,用實(shí)線(xiàn)表示裁剪線(xiàn),虛線(xiàn)表示折痕;并求長(zhǎng)方體底面面積為12dm2時(shí),裁掉的正方形邊長(zhǎng)多大?
(2)若要求制作的長(zhǎng)方體的底面長(zhǎng)不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費(fèi)用為0.5元,底面每平方分米的費(fèi)用為2元,裁掉的正方形邊長(zhǎng)多大時(shí),總費(fèi)用最低,最低為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com