12.將拋物線y=x2向右平移兩個(gè)單位,再向下平移4個(gè)單位,所得拋物線是( 。
A.y=(x+2)2+4B.y=(x-2)2-4C.y=(x-2)2+4D.y=(x+2)2-4

分析 先確定出原拋物線的頂點(diǎn)坐標(biāo),然后根據(jù)向右平移橫坐標(biāo)加,向下平移縱坐標(biāo)減求出新圖象的頂點(diǎn)坐標(biāo),然后寫出即可.

解答 解:拋物線y=x2的頂點(diǎn)坐標(biāo)為(0,0),
向右平移2個(gè)單位,再向下平移4個(gè)單位后的圖象的頂點(diǎn)坐標(biāo)為(2,-4),
所以,所得圖象的解析式為y=(x-2)2-4,
故選:B.

點(diǎn)評(píng) 本題主要考查的是函數(shù)圖象的平移,根據(jù)平移規(guī)律“左加右減,上加下減”利用頂點(diǎn)的變化確定圖形的變化是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.解方程:$\frac{{x}^{2}+2}{6}$+$\frac{x}{2}$=x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.將一元二次方程3x2-5=4x化為一般形式后,二次項(xiàng)系數(shù)和一次項(xiàng)系數(shù)分別是( 。
A.-3,4B.3,-4C.-3,-4D.3,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列運(yùn)算正確的是( 。
A.2a+3b=5abB.(3a32=6a6C.a6÷a2=a3D.a2•a3=a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,E是?ABCD的BA邊的延長(zhǎng)線上的一點(diǎn),CE交AD于點(diǎn)F.下列各式中,錯(cuò)誤的是( 。
A.$\frac{AE}{BE}$=$\frac{AF}{BC}$B.$\frac{AE}{AB}$=$\frac{AF}{DF}$C.$\frac{AE}{AB}$=$\frac{FE}{FC}$D.$\frac{AE}{AB}$=$\frac{AF}{BC}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,直線y=-x+3與x軸,y軸分別交于B,C兩點(diǎn),拋物線y=ax2+bx+c過(guò)A(1,0),B,C三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方圖形上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求線段MN的最大值.
(3)在(2)的條件下,當(dāng)MN取得最大值時(shí),在拋物線的對(duì)稱軸l上是否存在點(diǎn)P,使△PBN是以BN為腰的等腰三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如果不等式組$\left\{\begin{array}{l}{x>5}\\{x<a}\end{array}\right.$有4個(gè)正整數(shù)解,則a的取值范圍是(  )
A.9≤a<10B.9<a≤10C.a≤9D.a≥5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在△ABC中,AB=2,AC=BC=$\sqrt{5}$
(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標(biāo)系如圖,請(qǐng)你分別寫出A、B、C三點(diǎn)的坐標(biāo);
(2)求過(guò)A、B、C三點(diǎn)且以C為頂點(diǎn)的拋物線的解析式;
(3)若D為拋物線上的一動(dòng)點(diǎn),當(dāng)D點(diǎn)坐標(biāo)為何值時(shí),S△ABD=$\frac{1}{2}$S△ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(一)知識(shí)拓展
如圖Ⅰ,AB∥CD,點(diǎn)E,F(xiàn)在AB上,點(diǎn)M,N在CD上,則S△MNE=S△MNF.即同底(或等底)等高(或同高)的三角形的面積相等.
(二)解決問(wèn)題.
數(shù)學(xué)興趣小組的同學(xué)利用含30°的角的三個(gè)全等直角三角板拼了下面的圖形(如圖Ⅱ).
已知∠ACB=∠AFE=∠DCF=90°,∠CAB=∠AEF=∠CDF=30°,點(diǎn)F在AB上.
(1)直接寫出圖中存在旋轉(zhuǎn)關(guān)系的一對(duì)三角形;
(2)連接AD,判斷四邊形ADFE的形狀,并寫出理由.
(3)若點(diǎn)G是邊DF上任意一點(diǎn),連接GB,GC,設(shè)△CAF的面積為S1,△CBG的面積為S2,寫出S1與S2間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案