【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.如果點P在線段BC上以3cm/s的速度由點B向C點運動,同時,點Q在線段CA上由點C向A點運動.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.
(2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
【答案】(1)詳見解析;(2)點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為cm/s時,能夠使△BPD與△CQP全等.
【解析】
(1)經(jīng)過1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即據(jù)SAS可證得△BPD≌△CQP.
(2)可設(shè)點Q的運動速度為x(x≠3)cm/s,經(jīng)過ts △BPD與△CQP全等,則可知PB=3t cm,PC=(8-3t)cm,CQ=xt cm,據(jù)(1)同理可得當BD=PC,BP=CQ或BD=CQ,BP=PC時兩三角形全等,求x的解即可.
解:(1)經(jīng)過1秒后,PB=3cm,PC=5cm, CQ=3cm,
∵△ABC中,AB=AC,
∴在△BPD和△CQP中,
,
∴△BPD≌△CQP(SAS).
(2)設(shè)點Q的運動速度為x(x≠3)cm/s,經(jīng)過ts△BPD與△CQP全等;則可知PB=3t cm,PC=(8-3t)cm,CQ=xt cm,
∵AB=AC,
∴∠B=∠C,
根據(jù)全等三角形的判定定理SAS可知,有兩種情況:
①當BD=PC,BP=CQ時,②當BD=CQ,BP=PC時,兩三角形全等;
①當BD=PC且BP=CQ時,
8﹣3t=5且3t=xt,解得x=3,
∵x≠3,
∴舍去此情況;
②BD=CQ,BP=PC時,
5=xt且3t=8﹣3t,
解得:x=;
故若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為cm/s時,能夠使△BPD與△CQP全等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿著過AB中點D的直線折疊,使點A落在BC邊上的A1,稱為第1次操作,折痕DE到BC的距離記為h1;還原紙片后,再將△ADE沿著過AD中點D1的直線折疊,使點A落在DE邊上的A2處,稱為第2次操作,折痕D1E1到BC的距離記為h2:按上述方法不斷操作下去…,經(jīng)過第2019次操作后得到的折痕D2018E2018,到BC的距離記為h2019:若h1=1,則h2019的值為(____)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題引領(lǐng))
問題1:如圖1,在四邊形ABCD中,CB=CD,∠B=∠ADC=90°,∠BCD=120°.E,F分別是AB,AD上的點.且∠ECF=60°.探究圖中線段BE,EF,FD之間的數(shù)量關(guān)系.小王同學(xué)探究此問題的方法是,延長FD到點G.使DG=BE.連結(jié)CG,先證明△CBE≌△CDG,再證明△CEF≌△CGF.他得出的正確結(jié)論是 .
(探究思考)
問題2:如圖2,若將問題1的條件改為:四邊形ABCD中,CB=CD,∠ABC+∠ADC=180°,∠ECF=∠BCD,問題1的結(jié)論是否仍然成立?請說明理由.
(拓展延伸)
問題3:如圖3,在問題2的條件下,若點E在AB的延長線上,點F在DA的延長線上,若BE=2,DF=8,求EF的長(請直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,A1B1和A2B2是水面上相鄰的兩條賽道(看成兩條互相平行的線段).甲是一名游泳運動健將,乙是一名游泳愛好者,甲在賽道A1B1上從A1處出發(fā),到達B1后,以同樣的速度返回A1處,然后重復(fù)上述過程;乙在賽道A2B2上以2m/s的速度從B2處出發(fā),到達A2后以相同的速度回到B2處,然后重復(fù)上述過程(不考慮每次折返時的減速和轉(zhuǎn)向時間).若甲、乙兩人同時出發(fā),設(shè)離開池邊B1B2的距離為y(m),運動時間為t(s),甲游動時,y(m)與t(s)的函數(shù)圖象如圖2所示.
(1)賽道的長度是 m,甲的速度是 m/s;
(2)經(jīng)過多少秒時,甲、乙兩人第二次相遇?
(3)若從甲、乙兩人同時開始出發(fā)到2分鐘為止,甲、乙共相遇了 次.2分鐘時,乙距池邊B1B2的距離為多少米。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知∠A=60°,∠ABC的平分線BD與∠ACB的平分線CE相交于點O,∠BOC的平分線交BC于F,有下列結(jié)論:①∠BOE=60°,②∠ABD=∠ACE,③OE=OD,④BC=BE+CD。其中正確的是_________。(把所有正確結(jié)論的序號都選上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格中有格點△ABC與△DEF.
(1)△ABC與△DEF是否全等?(不說理由.)
(2)△ABC與△DEF是否成軸對稱?(不說理由.)
(3)若△ABC與△DEF成軸對稱,請畫出它的對稱軸l.并在直線l上畫出點P,使PA+PC最�。�
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB的中點,AD//EC,∠AED=∠B.
(1)求證:△AED≌△EBC;
(2)當AB=6時,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC是△ABD的角平分線,BC=DC,∠A=∠E=30°,∠D=50°.
(1)寫出AB=DE的理由;
(2)求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形OABC的邊OA在x軸上,點B的坐標為(8,4),P是對角線OB上的一個動點,點D(0,1)在y軸上,當PC+PD最短時,點P的坐標為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com