【題目】已知:如圖1,點(diǎn)、、依次在直線上,現(xiàn)將射線繞點(diǎn)沿順時(shí)針方向以每秒的速度旋轉(zhuǎn),同時(shí)射線繞點(diǎn)沿逆時(shí)針方向以每秒的速度旋轉(zhuǎn),如圖,設(shè)旋轉(zhuǎn)時(shí)間為(秒秒).
(1)用含的代數(shù)式表示的度數(shù).
(2)在運(yùn)動(dòng)過程中,當(dāng)第二次達(dá)到時(shí),求的值.
(3)在旋轉(zhuǎn)過程中是否存在這樣的,使得射線是由射線、射線、射線中的其中兩條組成的角(指大于而不超過的角)的平分線?如果存在,請(qǐng)直接寫出的值;如果不存在,請(qǐng)說明理由.
【答案】(1)∠MOA=2t;(2)40秒;(3)t的值分別為18、22.5、36、67.5秒.
【解析】
(1)∠AOM的度數(shù)等于OA旋轉(zhuǎn)速度乘以旋轉(zhuǎn)時(shí)間;
(2)當(dāng)∠AOB第二次達(dá)到60°時(shí),射線OB在OA的左側(cè),根據(jù)∠AOM+∠BON-∠MON=60°列方程求解可得;
(3)射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角的平分線有三種情況:
①OB平分∠AOM時(shí),根據(jù)∠AOM=∠BOM,列方程求解,
②OB平分∠MON時(shí),根據(jù)∠BOM=∠MON,列方程求解,
③OB平分∠AON時(shí),根據(jù)∠BON=∠AON,列方程求解.
(1)由題意得:∠MOA=2t;
(2)如圖,
根據(jù)題意知:∠AOM=2t,∠BON=4t,
當(dāng)∠AOB第二次達(dá)到60°時(shí),∠AOM+∠BON-∠MON=60°,
即2t+4t-180=60,解得:t=40,
故t=40秒時(shí),∠AOB第二次達(dá)到60°;
(3)射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角的平分線有以下三種情況:
①OB平分∠AOM時(shí),
∵∠AOM=∠BOM,
∴t=180-4t,
解得:t=36;
②OB平分∠MON時(shí),
∵∠BOM=∠MON,即∠BOM=90°,
∴4t=90,或4t-180=90,
解得:t=22.5,或t=67.5;
③OB平分∠AON時(shí),
∵∠BON=∠AON,
∴4t=(180-2t),
解得:t=18;
綜上,當(dāng)t的值分別為18、22.5、36、67.5秒時(shí),射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角的平分線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,以邊長為8的正方形紙片ABCD的邊AB為直徑作⊙O,交對(duì)角線AC于點(diǎn)E.
(1)線段AE=____________;
(2)如圖2,以點(diǎn)A為端點(diǎn)作∠DAM=30°,交CD于點(diǎn)M,沿AM將四邊形ABCM剪掉,使Rt△ADM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)(如圖3),設(shè)旋轉(zhuǎn)角為α(0°<α<150°),旋轉(zhuǎn)過程中AD與⊙O交于點(diǎn)F.
①當(dāng)α=30°時(shí),請(qǐng)求出線段AF的長;
②當(dāng)α=60°時(shí),求出線段AF的長;判斷此時(shí)DM與⊙O的位置關(guān)系,并說明理由;
③當(dāng)α=___________°時(shí),DM與⊙O相切。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面的文字,然后按要求解題:
例:1+2+3+ … +100=?
如果一個(gè)一個(gè)順次相加顯然太繁瑣,我們仔細(xì)分析這100個(gè)連續(xù)自然數(shù)的規(guī)律和特點(diǎn),可以發(fā)現(xiàn)運(yùn)用加法運(yùn)算律,是可以大大簡化計(jì)算,提高運(yùn)算速度的.
因?yàn)?/span>1+100=2+99=3+98= … =50+51=101
所以將所給算式中各加數(shù)經(jīng)過交換、結(jié)合以后,可以很快求出結(jié)果.
解:1+2+3+ … +100
=(1+100)+(2+99)+(3+98)+ … +(50+51)
=101×____________
=____________ .
(1)補(bǔ)全例題的解題過程;
(2)計(jì)算:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,用棋子擺成的“上”字:
第一個(gè)“上”字 第二個(gè)“上”字 第三個(gè)“上”字
如果按照以上規(guī)律繼續(xù)擺下去,那么通過觀察,可以發(fā)現(xiàn):
(1)第四、第五個(gè)“上”字分別需用 和 枚棋子.
(2)第n個(gè)“上”字需用 枚棋子.
(3)如果某一圖形共有102枚棋子,你知道它是第幾個(gè)“上”字嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔賽跑”是同學(xué)們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時(shí)間t的關(guān)系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是( )
A. 賽跑中,兔子共休息了50分鐘
B. 烏龜在這次比賽中的平均速度是0.1米/分鐘
C. 兔子比烏龜早到達(dá)終點(diǎn)10分鐘
D. 烏龜追上兔子用了20分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形AECF中,.CE、CF分別是△ABC的內(nèi),外角平分線.
(1)求證:四邊形AECF是矩形.
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形AECF是正方形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線相交于點(diǎn)O,AC=2,BD=2,將菱形按如圖方式折疊,使點(diǎn)B與點(diǎn)O重合,折痕為EF,則五邊形AEFCD的周長為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC∽正方形ODEF,它們是以原點(diǎn)O為位似中心的位似圖形,位似比為1: , 點(diǎn)A的坐標(biāo)為(0,1),則點(diǎn)E的坐標(biāo)是________或________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( )
A.13=3+10B.25=9+16C.36=15+21D.49=18+31
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com