【題目】佳佳商場賣某種衣服每件的成本為元,據(jù)銷售人員調(diào)查發(fā)現(xiàn),每月該衣服的銷售量(單位:件)與銷售單價(jià)(單位:元/件)之間存在如圖中線段所示的規(guī)律:

1)求之間的函數(shù)關(guān)系式,并寫出的取值范圍;

2)若某月該商場銷售這種衣服獲得利潤為元,求該月這種衣服的銷售單價(jià)為每件多少元?

【答案】(1);(2)該月這種衣服的銷售單價(jià)為每件

【解析】

1)根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法可求出每月銷售量y與銷售單價(jià)x之間的函數(shù)關(guān)系式;

2)根據(jù)總利潤=每千克的利潤×月銷售數(shù)量,即可得出關(guān)于x的一元二次方程,解之即可得出結(jié)論.

解:(1)依題意可設(shè),

由圖像得:點(diǎn)都在的圖像上,

,

之間的函數(shù)關(guān)系式:,

由圖象得,的取值范圍:;

(2)依題意得:,

,

解得: (舍去);

∴該月這種衣服的銷售單價(jià)為每件元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,將矩形繞點(diǎn)旋轉(zhuǎn)得到矩形,使點(diǎn)的對應(yīng)點(diǎn)落在上,于點(diǎn),在上取點(diǎn),使

(1)證:

(2)的度數(shù).

(3)知,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表所示:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從上表可知,下列說法中,錯(cuò)誤的是( )

A. 拋物線于x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣2,0)

B. 拋物線與y軸的交點(diǎn)坐標(biāo)為(0,6)

C. 拋物線的對稱軸是直線x=0

D. 拋物線在對稱軸左側(cè)部分是上升的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題情境)如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

1)(問題解決)延長AD到點(diǎn)E使DE=AD,再連接BE(或?qū)ⅰ?/span>ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷出中線AD的取值范圍是   

(反思感悟)解題時(shí),條件中若出現(xiàn)中點(diǎn)、中線字樣,可以考慮構(gòu)造以該中點(diǎn)為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同個(gè)三角形中,從而解決問題.

2)(嘗試應(yīng)用)如圖②,△ABC中,∠BAC=90°ADBC邊上的中線,試猜想線段AB,ACAD之間的數(shù)量關(guān)系,并說明理由.

3)(拓展延伸)如圖③,△ABC中,∠BAC=90°DBC的中點(diǎn),DMDN,DMAB于點(diǎn)M,DNAC于點(diǎn)N,連接MN.當(dāng)BM=4,MN=5AC=6時(shí),請直接寫出中線AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=6,點(diǎn)M在⊙O上,∠MBA=20°,N的中點(diǎn),P是直徑AB上的一動(dòng)點(diǎn),若AN=1,則△PMN周長的最小值為( 。

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,點(diǎn)A是半圓上的三等分點(diǎn),點(diǎn)B是劣弧AN的中點(diǎn),點(diǎn)P是直徑MN上一動(dòng)點(diǎn).若MN=2,AB=1,則△PAB周長的最小值是( 。

A. 2+1 B. +1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的一條弦,ODAB,垂足為點(diǎn)C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上.

(1)若∠AOD=52°,求∠DEB的度數(shù);

(2)若CD=2,AB=8,求半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD為∠BAC的平分線,BMAD,垂足為M,AB=5,BM=2,AC=9,∠ABC與∠C的關(guān)系為(

A.ABC=2CB.∠ABC=CC.ABC=CD.ABC=3C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對角線AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長.

查看答案和解析>>

同步練習(xí)冊答案