二次函數(shù)的圖象如圖所示,試確定、的符號;             0,
             0.(填不等號)
< >

試題分析:由題意知,該二次函數(shù)開口向下,所以,即為-1,當(dāng)x=0時,y=c在x軸的上半軸,所以,該二次函數(shù)的對稱軸是,故
點評:本題屬于對二次函數(shù)各個系數(shù)的符號的判定,在考查時要通過對坐標(biāo)軸進(jìn)行分析以及對對稱軸在各個點的知識進(jìn)行判定
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=x+m和拋物線y=x2+bx+c都經(jīng)過點A(1,0),B(3,2).

(1)求m的值和拋物線的解析式;
(2)求拋物線的對稱軸和頂點坐標(biāo);
(3)若此拋物線與y軸交于點C,點P是x軸上的一個動點,當(dāng)點P到C、B兩點的距離之和最小時,求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線軸于兩點,交軸于點,對稱軸為直線。且A、C兩點的坐標(biāo)分別為

(1)求拋物線的解析式;
(2)在對稱軸上是否存在一個點,使的周長最。舸嬖,請求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線(b是實數(shù)且b>2)與x軸的正半軸分別交于點A、B(點A位于點B的左側(cè)),與y軸的正半軸交于點C.

(1)點B的坐標(biāo)為      ,點C的坐標(biāo)為      (用含b的代數(shù)式表示);
(2)若b=8,請你在拋物線上找點P,使得△PAC是直角三角形?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由;
(3)請你探索,在(1)的結(jié)論下,在第一象限內(nèi)是否存在點Q,使得△QCO、△QOA和△QAB中的任意兩個三角形均相似(全等可看作相似的特殊情況)如果存在,求出點Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,拋物線y=a(x-1)2+c與x軸交于點A(1-,0)和點B,將拋物線沿x軸向上翻折,頂點P落在點P'(1,3)處.

(1)求原拋物線的解析式;
(2)學(xué)校舉行班徽設(shè)計比賽,九年級5班的小明在解答此題時頓生靈感:過點P'作x軸的平行線交拋物線于C、D兩點,將翻折后得到的新圖象在直線CD以上的部分去掉,設(shè)計成一個“W”型的班徽,“5”的拼音開頭字母為W,“W”圖案似大鵬展翅,寓意深遠(yuǎn);而且小明通過計算驚奇的發(fā)現(xiàn)這個“W”圖案的高與寬(CD)的比非常接近黃金分割比.請你計算這個“W”圖案的高與寬的比到底是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,E是正方形ABCD的邊AB上的動點, EF⊥DE交BC于點F.若正方形的邊長為4, AE=,BF=.則 的函數(shù)關(guān)系式為          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)求二次函數(shù)y=x2-4x+1圖象的頂點坐標(biāo),并指出當(dāng)x在何范圍內(nèi)取值時,y隨x的增大而減;
(2)若二次函數(shù)y=x2-4x+c的圖象與坐標(biāo)軸有2個交點,求字母c應(yīng)滿足的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線向左平移8個單位,再向下平移9個單位后,所得拋物線關(guān)系式是(    )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,∠A=90°,BC=10,tan∠ABC=3:4,M是AB上的動點(不與A,B重合),過M點作MN∥BC交AC于點N,以AM、AN為鄰邊作矩形AMPN,其對角線交點為G。直線MP、NP分別與邊BC相交于點E、F,設(shè)AP=x。

圖1                        圖2
(1)求AB、AC的長;
(2)如圖2,當(dāng)點P落在BC上時,求x的值;
(3)當(dāng)EF=5時,求x的值;
(4)在動點M的運(yùn)動過程中,記△MNP與梯形BCNM重合部分的面積為y。試求y關(guān)于x的函數(shù)表達(dá)式,并求出y的最大值。

查看答案和解析>>

同步練習(xí)冊答案