【題目】如圖,扇形OMN與正方形ABCD,半徑OM與邊AB重合,弧MN的長等于AB的長,已知AB=2,扇形OMN沿著正方形ABCD逆時針滾動到點O首次與正方形的某頂點重合時停止,則點O經(jīng)過的路徑長 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(一)問題提出:如何把n個邊長為1的正方形,剪拼成一個大正方形?
(二)解決方法
探究一:若n是完全平方數(shù),我們不用剪切小正方形,可直接將小正方形拼成一個大正方形,如圖(1),用四個邊長為1的小正方形可以拼成一個大正方形.
問題1:請用9個邊長為1的小正方形在圖(2)的位置拼成一個大正方形.
探究二:若n=2,5,10,13等這些數(shù),都可以用兩個正整數(shù)的平方和來表示,以n=5為例,用5個邊長為1的小正方形剪拼成一個大正方形.
(1)計算:拼成的大正方形的面積為5,邊長為,可表示成;
(2)剪切:如圖(3)將5個小正方形按如圖所示分成5部分,虛線為剪切線;
(3)拼圖:以圖(3)中的虛線為邊,拼成一個邊長為的大正方形,如圖(4).
問題2:請仿照上面的研究方式,用13個邊長為1的小正方形剪拼成一個大正方形;
(1)計算:拼成的大正方形的面積為____,邊長為_____,可表示成____;
(2)剪切:請仿照圖(3)的方法,在圖(5)的位置畫出圖形.
(3)拼圖:請仿照圖(4)的方法,在圖(6)的位置出拼成的圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,∠5=∠6,∠3=∠4,試說明AE∥BD,AD∥BC.請完成下列證明過程.
證明:
∵∠5=∠6,
∴AB∥CE( ),
∴∠3=__________
∵∠3=∠4,
∴∠4=∠BDC( ),
∴ ∥BD( ),
∴∠2= ( )
∵∠1=∠2,
∴∠1=______,
∴AD∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點E,連接CE,作BF⊥CE,垂足為F,則tan∠FBC的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市場上的紅茶由茶原液與純凈水按一定比例配制而成,其中購買一噸茶原液的錢可以買15 噸純凈水。由于今年以來茶產(chǎn)地連續(xù)大旱,茶原液收購價上漲50%.純凈水價也上漲了10%,導(dǎo)致配制的這種茶飲料成本上漲40%,問這種茶飲料中茶原液與純凈水的配制比例為_______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,給出下列四個條件:① ∠BAC=∠DCA;② ∠DAC=∠BCA;③ ∠ABD=∠CDB;④ ∠ADB=∠CBD,其中能使 AD∥BC的條件是( )
A.①②B.③④C.②④D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,ABCD是邊長為60cm的正方形硬紙片,切去四個全等的等腰直角三角形(陰影部分所示),其中E,F(xiàn)在AB上;再沿虛線折起,點A,B,C,D恰好重合于點O處(如圖②所示),形成有一個底面為正方形GHMN的包裝盒,設(shè)AE=x (cm).
(1)求線段GF的長;(用含x的代數(shù)式表示)
(2)當x為何值時,矩形GHPF的面積S (cm2)最大?最大面積為多少?
(3)試問:此種包裝盒能否放下一個底面半徑為15cm,高為10cm的圓柱形工藝品,且使得圓柱形工藝品的一個底面恰好落在圖②中的正方形GHMN內(nèi)?若能,請求出滿足條件的x的值或范圍;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解全校學(xué)生對新聞,體育.動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,機調(diào)查了100名學(xué)生,結(jié)果如扇形圖所示,依據(jù)圖中信息,回答下列問題: (1)在被調(diào)查的學(xué)生中,喜歡“動畫”節(jié)目的學(xué)生有 _____(名); (2)在扇形統(tǒng)計圖中,喜歡“體育”節(jié)目的學(xué)生部分所對應(yīng)的扇形圓心角大小為 _____(度).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com