【題目】如圖,在△ABC中,ADBC邊上的中線,EAD的中點(diǎn),過點(diǎn)ABC的平行線交BE的延長線于點(diǎn)F,連接CF.

(1) 求證:AF=DC;

(2) ACAB,試判斷四邊形ADCF的形狀,并說明理由;

(3) 當(dāng)△ABC滿足什么條件時(shí),四邊形ADCF是正方形?請說明理由.

【答案】(1)證明見解析(2)四邊形ADCF是菱形(3)當(dāng)AB=AC且∠BAC=90°時(shí),四邊形ADCF是正方形

【解析】

(1)連接DF,由AAS證明△AFE≌△DBE,得出AF=BD,即可得出答案;
(2)根據(jù)平行四邊形的判定得出平行四邊形ADCF,求出AD=CD,根據(jù)菱形的判定得出即可;
(3)根據(jù)等腰三角形性質(zhì)求出AD⊥BC,得出∠ADC=90°,根據(jù)正方形的判定得出即可.

(1)證明:連接DF,

EAD的中點(diǎn),

AE=DE,

AFBC,

∴∠AFE=DBE,

在△AFE和△DBE中,

AFE=DBE,FEA=DEB,AE=DE,

∴△AFE≌△DBE(AAS),

EF=BE

AE=DE,

∴四邊形AFDB是平行四邊形,

BD=AF,

AD為中線,

DC=BD,

AF=DC;

(2)四邊形ADCF的形狀是菱形,理由如下:

AF=DC,AFBC

∴四邊形ADCF是平行四邊形,

ACAB,

∴∠CAB=90°,

AD為中線,

AD=BC=DC,

∴平行四邊形ADCF是菱形;

(3)當(dāng)△ABC滿足AC=AB且∠BAC=90°時(shí),四邊形ADCF為正方形,理由如下:

∵∠CAB=90°,AC=AB,AD為中線,

ADBC

∴∠ADC=90°,

∵四邊形ADCF是菱形,

∴四邊形ADCF是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在干燥的路面上,使車子停止前進(jìn)所需的剎車距離s(m)與車速v(km/h)的關(guān)系是s=v+v2 .

(1)當(dāng)v分別是48,64時(shí),求相應(yīng)的剎車距離s的值;

(2)司機(jī)小李正以72km/h的速度行駛,突然發(fā)現(xiàn)前方大約60m處有一不明障礙物,他立即剎車,車會(huì)撞上障礙物嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形MNPQ中,動(dòng)點(diǎn)R從點(diǎn)N出發(fā),沿著N→P→Q→M方向運(yùn)動(dòng)至點(diǎn)M處停止,設(shè)點(diǎn)R運(yùn)動(dòng)的路程為x,MNR的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則下列說法不正確的是(

A.當(dāng)x=2時(shí),y=5

B.矩形MNPQ的面積是20

C.當(dāng)x=6時(shí),y=10

D.當(dāng)y=時(shí),x=10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=8 AC=10,D點(diǎn)在AC上,ABCD,EF分別是BC、AD的中點(diǎn),連結(jié)EF并延長,與BA的延長線交于點(diǎn)G,連接GD,若∠EFC60°,則EG的長為(

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分式中,在分子、分母都是整式的情況下,如果分子的次數(shù)低于分母的次數(shù),稱這樣的分式為真分式.例如,分式是是真分式.如果分子的次數(shù)不低于分母的次數(shù),稱這樣的分式為假分式.例如,分式,是假分式.一個(gè)假分式可以化為一個(gè)整式與一個(gè)真分式的和.例如,==1-

1)將假分式化為一個(gè)整式與一個(gè)真分式的和;

2)如果分式的值為整數(shù),求x的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如右圖,在中,,,垂足為點(diǎn),有下列說法:①點(diǎn)與點(diǎn)的距離是線段的長;②點(diǎn)到直線的距離是線段的長;③線段上的高;④線段上的高.

上述說法中,正確的個(gè)數(shù)為(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN表示一段筆直的高架道路,線段AB表示高架道路旁的一排居民樓,已知點(diǎn)A到MN的距離為15米,BA的延長線與MN相交于點(diǎn)D,且∠BDN=30°,假設(shè)汽車在高速道路上行駛時(shí),周圍39米以內(nèi)會(huì)受到噪音(XRS)的影響.

(1)過點(diǎn)A作MN的垂線,垂足為點(diǎn)H,如果汽車沿著從M到N的方向在MN上行駛,當(dāng)汽車到達(dá)點(diǎn)P處時(shí),噪音開始影響這一排的居民樓,那么此時(shí)汽車與點(diǎn)H的距離為多少米?

(2)降低噪音的一種方法是在高架道路旁安裝隔音板,當(dāng)汽車行駛到點(diǎn)Q時(shí),它與這一排居民樓的距離QC為39米,那么對于這一排居民樓,高架道路旁安裝的隔音板至少需要多少米長?(精確到1米)(參考數(shù)據(jù):≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABAD,ACAE,BCDE,點(diǎn)EBC上.

1)求證:△ABC≌△ADE;(2)求證:∠EAC=∠DEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,AB=AC,D、E分別在邊AB、AC上,且滿足AD=AE.下列結(jié)論中:①;②AO平分∠BAC;③OB=OC;④AOBC;⑤若,則;其中正確的有( )

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)

查看答案和解析>>

同步練習(xí)冊答案