【題目】如圖乙,和是有公共頂點(diǎn)的等腰直角三角形,,點(diǎn)為射線,的交點(diǎn).
(1)如圖甲,將繞點(diǎn)旋轉(zhuǎn),當(dāng)、、在同一條直線上時(shí),連接、,則下列給出的四個(gè)結(jié)論中,其中正確的是哪幾個(gè) ;(回答直接寫序號(hào))
①;②;③;④
(2)若,,把繞點(diǎn)旋轉(zhuǎn).
①當(dāng)時(shí),求的長(zhǎng);
②直接寫出旋轉(zhuǎn)過程中線段的最大值和最小值.
【答案】(1)①②③;(2)①或;②長(zhǎng)的最小值是,最大值是.
【解析】
(1)①由條件證明△ABD≌△ACE,就可以得到結(jié)論②由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠BDC=90°,進(jìn)而得出結(jié)論;③由條件知∠ABC=∠ABD+∠DBC=45°,由∠ABD=∠ACE就可以得出結(jié)論;④△BDE為直角三角形就可以得出BE2=BD2+DE2,由△DAE和△BAC是等腰直角三角形就有DE2=2AD2,BC2=2AB2,就有BC2=BD2+CD2≠BD2就可以得出結(jié)論.
(2)①分兩種情形a、如圖2中,當(dāng)點(diǎn)E在AB上時(shí),BE=AB-AE=3,由△PEB∽△AEC,得,由此即可解決問題.b、如圖3中,當(dāng)點(diǎn)E在BA延長(zhǎng)線上時(shí),BE=9,解法類似;
②a、如圖4中,以A為圓心AD為半徑畫圓,當(dāng)CE在⊙A上方與⊙A相切時(shí),PB的值最大.b、如圖5中,以A為圓心AD為半徑畫圓,當(dāng)CE在⊙A下方與⊙A相切時(shí),PB的值最小,分別求出PB即可.
(1)解:如圖甲:
①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴BD=CE,∴①正確;
②∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°.
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°.
∴BD⊥CE,∴②正確;
③∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,∴③正確;
④∵BD⊥CE,
∴BE2=BD2+DE2,
∵∠BAC=∠DAE=90°,AB=AC,AD=AE,
∴DE2=2AD2,BC2=2AB2,
∵BC2=BD2+CD2≠BD2,
∴2AB2=BD2+CD2≠BD2,
∴BE2≠2(AD2+AB2),∴④錯(cuò)誤.
故答案為①②③.
(2)①解:a.如圖2中,當(dāng)點(diǎn)在上時(shí),.
∵,
∴,
同(1)可證,
∴,
∵,
∴,
∴,
∴,
∴;
b.如圖3中,當(dāng)點(diǎn)在延長(zhǎng)線上時(shí),,
∵,
∴,
同(1)可證,
∴,
∵,
∴,
∴,
∴,
∴,綜上,或;
②解:a.如圖4中,以為圓心為半徑畫圓,當(dāng)在下方與相切時(shí),的值最。
理由:此時(shí)最小,由(1)可知是直角三角形,斜邊為定值,最小,因此最小,
∵,
∴,
由(1)可知,,
∴,,
∴,且AD=AE=3,
∴四邊形是正方形,
∴,
∴;
b.如圖5中,以為圓心為半徑畫圓,當(dāng)在上方與相切時(shí),的值最大.
理由:此時(shí)最大,因此最大,(同理,是直角三角形,斜邊為定值,最大,因此最大)
∵,
∴,
由(1)可知,,
∴,,
∴,且AD=AE=3,
∴四邊形是正方形,
∴,
∴.
綜上所述,長(zhǎng)的最小值是,最大值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,直線y=與x軸、y軸分別交于點(diǎn)B,C,拋物線y=過B,C兩點(diǎn),且與x軸的另一個(gè)交點(diǎn)為點(diǎn)A,連接AC.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點(diǎn)D(與點(diǎn)A不重合),使得S△DBC=S△ABC,若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)有寬度為2,長(zhǎng)度足夠長(zhǎng)的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對(duì)邊交拋物線于點(diǎn)P和點(diǎn)Q,交直線CB于點(diǎn)M和點(diǎn)N,在矩形平移過程中,當(dāng)以點(diǎn)P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.
(1)求證:四邊形ABEF是平行四邊形;
(2)當(dāng)∠ABC為多少度時(shí),四邊形ABEF為矩形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利達(dá)經(jīng)銷店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).當(dāng)每噸售價(jià)為260元時(shí),月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營(yíng)利潤(rùn),準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):當(dāng)每噸售價(jià)每下降10元時(shí),月銷售量就會(huì)增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費(fèi)用100元.
(1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷售量;
(2)在遵循“薄利多銷”的原則下,問每噸材料售價(jià)為多少時(shí),該經(jīng)銷店的月利潤(rùn)為9000元?
(3)小靜說:“當(dāng)月利潤(rùn)最大時(shí),月銷售額也最大.”你認(rèn)為對(duì)嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1,2,3,4,另外有一個(gè)可以自由旋轉(zhuǎn)的圓盤,被分成面積相等的3個(gè)扇形區(qū)域,分別標(biāo)有數(shù)字1,2,3(如圖所示).
(1)從口袋中摸出一個(gè)小球,所摸球上的數(shù)字大于2的概率為 ;
(2)小龍和小東想通過游戲來決定誰(shuí)代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一人轉(zhuǎn)動(dòng)圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于5,那么小龍去;否則小東去.你認(rèn)為游戲公平嗎?請(qǐng)用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),過點(diǎn)C做⊙O 的切線,與AE的延長(zhǎng)線交于點(diǎn)D,且AD⊥CD.
(1)求證:AC平分∠DAB;
(2)若AB=10,CD=4,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在正方形ABCD中,點(diǎn)E是AB的中點(diǎn),點(diǎn)P是對(duì)角線AC上一動(dòng)點(diǎn),設(shè)PC的長(zhǎng)度為x,PE與PB的長(zhǎng)度和為y,圖②是y關(guān)于x的函數(shù)圖象,則圖象上最低點(diǎn)H的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知頂點(diǎn)為的拋物線與軸交于,兩點(diǎn),且.
(1)求點(diǎn)的坐標(biāo);
(2)求二次函數(shù)的解析式;
(3)作直線,問拋物線上是否存在點(diǎn),使得.若存在,求出點(diǎn)的坐標(biāo):若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)方法選擇:如圖①,四邊形ABCD是⊙O的內(nèi)接四邊形,連接AC,BD,AB=BC=AC.求證:BD=AD+CD.
小穎認(rèn)為可用截長(zhǎng)法證明:在DB上截取DM=AD,連接AM…
小軍認(rèn)為可用補(bǔ)短法證明:延長(zhǎng)CD至點(diǎn)N,使得DN=AD…
請(qǐng)你選擇一種方法證明.
(2)類比探究:(探究1)如圖②,四邊形ABCD是⊙O的內(nèi)接四邊形,連接AC,BD,BC是⊙O的直徑,AB=AC.試用等式表示線段AD,BD,CD之間的數(shù)量關(guān)系,井證明你的結(jié)論.
(探究2)如圖③,四邊形ABCD是⊙O的內(nèi)接四邊形,連接AC,BD.若BC是⊙O的直徑,∠ABC=30°,則線段AD,BD,CD之間的等量關(guān)系式是 .
(3)拓展猜想:如圖④,四邊形ABCD是⊙O的內(nèi)接四邊形,連接AC,BD.若BC是⊙O的直徑,BC:AC:AB=a:b:c,則線段AD,BD,CD之間的等量關(guān)系式是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com