若關(guān)于x的函數(shù)y=(a-3)x2-(4a-1)x+4a的圖象與坐標(biāo)軸有兩個交點(diǎn),則a的值為( 。
A.3或0B.a(chǎn)>-
1
40
且a≠3
C.0或-
1
40
D.3或0或-
1
40
因為關(guān)于x的函數(shù)y=(a-3)x2-(4a-1)x+4a的圖象與坐標(biāo)軸只有兩個交點(diǎn),即與x軸、y軸各有一個交點(diǎn).
所以此函數(shù)若為二次函數(shù),則b2-4ac=[-(4a-1)]2-4(a-3)×4a=0,
即40a+1=0,
解得:a=-
1
40

若a=0,二次函數(shù)圖象過原點(diǎn),滿足題意.
若此函數(shù)為一次函數(shù),則a-3=0,所以a=3.
所以若關(guān)于x的函數(shù)y=(a-3)x2-(4a-1)x+4a的圖象與坐標(biāo)軸只有兩個交點(diǎn),則a=3或0或-
1
40

故選:D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若二次函數(shù)y=-x2+2(m-1)x+2m-m2的圖象關(guān)于y軸對稱,則m的值為:______.此函數(shù)圖象的頂點(diǎn)和它與x軸的兩個交點(diǎn)所確定的三角形的面積為:______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線y=
1
3
(x-4)2-3的部分圖象(如圖),圖象再次與x軸相交時的坐標(biāo)是(  )
A.(5,0)B.(6,0)C.(7,0)D.(8,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)二次函數(shù)y=-x2+(m-2)x+3(m+1)的圖象與x軸交于A、B兩點(diǎn)(A在B左邊),與y軸交于C點(diǎn),線段AO與OB的長的積等于6(O是坐標(biāo)原點(diǎn)),連接AC、BC,求sinC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線y=ax2+bx+c(a≠0)的對稱軸經(jīng)過(2,0),且與y軸平行,拋物線與x軸相交于A(1,0),與y軸相交于B(0,3),其在對稱軸左側(cè)的圖象如圖所示,下面四個結(jié)論:
①x>2時,y隨x的增大而增大;
②y=3時,x的值只能為0;
③若方程ax2+bx+c=0的兩根為x1、x2,則|x1-x2|=2;
④拋物線的頂點(diǎn)坐標(biāo)是(2,-1).
正確的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

利用函數(shù)圖象求得方程x2+x-12=0的解是x1=______,x2=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線y=kx2-2x-1與x軸有兩個不同的交點(diǎn),則k的取值范圍為( 。
A.k>-1B.k≥-1C.k>-1且k≠0D.k≥-1且k≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=-2x2+8x-6.
(1)求二次函數(shù)y=-2x2+8x-6的圖象與兩個坐標(biāo)軸的交點(diǎn)坐標(biāo);
(2)在坐標(biāo)平面上,橫坐標(biāo)與縱坐標(biāo)都是整數(shù)的點(diǎn)(x,y)稱為整點(diǎn).直接寫出二次函數(shù)y=-2x2+8x-6的圖象與x軸所圍成的封閉圖形內(nèi)部及邊界上的整點(diǎn)的個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在某公益活動中,小明對本班同學(xué)的捐款情況進(jìn)行了統(tǒng)計,繪制成如下不完整的統(tǒng)計圖.其中捐100元的人數(shù)占全班總?cè)藬?shù)的,則本次捐款的中位數(shù)是(    )元.
A.10B.20C.50D.100

查看答案和解析>>

同步練習(xí)冊答案