如圖,圓M與x軸相交于A,B兩點(diǎn),其坐標(biāo)分別為A(-3,0),B(1,0),直徑CD垂直于x軸于N,直線CE切圓M于C,直線FG切圓M于F,交CE于G,已知點(diǎn)G的橫坐標(biāo)為3,
(1)若拋物線y=-x2-2x+m經(jīng)過(guò)A,B,D三點(diǎn),求m的值及點(diǎn)D的坐標(biāo);
(2)求直線DF的解析式;
(3)是否存在過(guò)點(diǎn)G的直線,使它與(1)中拋物線的兩個(gè)交點(diǎn)的橫坐標(biāo)之和等于4?若存在,請(qǐng)求出滿足條件的直線的解析式;若不存在,請(qǐng)說(shuō)明理由.
(1)∵拋物線y=-x2-2x+m過(guò)點(diǎn)A,B兩點(diǎn),
∴-3×1=-m,
∴拋物線為y=-x2-2x+3,
又∵拋物線過(guò)點(diǎn)D,由圓的對(duì)稱性知點(diǎn)D為拋物線的頂點(diǎn),
∴D點(diǎn)坐標(biāo)為(-1,4).

(2)由題意知AB=4,
∵CD⊥x軸,
∴NA=NB=2,
∴ON=1,
由相交弦定理得NA•NB=ND•NC,
∴NC×4=2×2,NC=1,
∴C的坐標(biāo)為(-1,-1),
設(shè)直線DF交CE于P,連接CF,得∠CFP=90°,
∵CG,F(xiàn)G為圓M的切線,
∴FG=GC,
∴∠1=∠3,
∴∠2=∠FPC,
∴FG=GP,
∴GC=GP,
可得CP=8,
∴P點(diǎn)的坐標(biāo)為(7,-1);
設(shè)直線DF的解析式為y=kx+b(k≠0),
-k+b=4
7k+b=-1

解得
k=-
5
8
b=
27
8

∴直線DF的解析式為y=-
5
8
x+
27
8
;

(3)假設(shè)存在過(guò)G的直線y=k1x+b1,
則3k1+b1=-1,
∴b1=-3k1-1,
解方程組
y=k1x-3k1-1
y=-x2-2x+3

得x2+(2+k1)x-3k1-4=0,
由題意得-2-k1=4,
∴k1=-6,
∴△=-40<0,
∴方程無(wú)實(shí)數(shù)根,
∴方程組無(wú)實(shí)數(shù)解;
∴滿足條件的直線不存在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,設(shè)拋物線C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1與C2的交點(diǎn)為A,B,點(diǎn)A的坐標(biāo)是(2,4),點(diǎn)B的橫坐標(biāo)是-2.
(1)求a的值及點(diǎn)B的坐標(biāo);
(2)點(diǎn)D在線段AB上,過(guò)D作x軸的垂線,垂足為點(diǎn)H,在DH的右側(cè)作正三角形DHG.記過(guò)C2頂點(diǎn)M的直線為l,且l與x軸交于點(diǎn)N.
①若l過(guò)△DHG的頂點(diǎn)G,點(diǎn)D的坐標(biāo)為(1,2),求點(diǎn)N的橫坐標(biāo);
②若l與△DHG的邊DG相交,求點(diǎn)N的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知關(guān)于x的一元二次方程2x2+4x+k-1=0有實(shí)數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于x的二次函數(shù)y=2x2+4x+k-1的圖象向下平移8個(gè)單位,求平移后的圖象的解析式;
(3)在(2)的條件下,將平移后的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象.請(qǐng)你結(jié)合這個(gè)新的圖象回答:當(dāng)直線y=
1
2
x+b(b<k)與此圖象有兩個(gè)公共點(diǎn)時(shí),b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2一g一•昆明)在平面直角坐標(biāo)系v,拋物線經(jīng)過(guò)O(一,一)、A(4,一)、E(九,-
2
)三點(diǎn).
(g)求此拋物線的解析式;
(2)以O(shè)A的v點(diǎn)M為圓心,OM長(zhǎng)為半徑作⊙M,在(g)v的拋物線上是否存在這樣的點(diǎn)P,過(guò)點(diǎn)P作⊙M的切線l,且l與x軸的夾角為九一°?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(注意:本題v的結(jié)果可保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖1,在平面直角坐標(biāo)系中,將n個(gè)邊長(zhǎng)為1的正方形并排組成矩形OABC,相鄰兩邊OA和OC分別落在x軸和y軸的正半軸上.現(xiàn)將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使得點(diǎn)B落到x軸的正半軸上(如圖2),設(shè)拋物線y=ax2+bx+c(a<0),如果拋物線同時(shí)經(jīng)過(guò)點(diǎn)O、B、C:
①當(dāng)n=3時(shí)a=______;
②a關(guān)于n的關(guān)系式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)(1,-4)和(-2,5),請(qǐng)解答下列問(wèn)題:(1)求拋物線的解析式;
(2)若與x軸的兩個(gè)交點(diǎn)為A、B,與y軸交于點(diǎn)C.在該拋物線上找一點(diǎn)D,使得△ABC與△ABD全等,求出D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2-bx+c(b>0)的圖象經(jīng)過(guò)點(diǎn)A(-1,b),與y軸相交于點(diǎn)B,且∠ABO的余切值為3.
(1)求點(diǎn)B的坐標(biāo);
(2)求這個(gè)函數(shù)的解析式;
(3)如果這個(gè)函數(shù)圖象的頂點(diǎn)為C,求證:∠ACB=∠ABO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成長(zhǎng)方形零件PQMN,使長(zhǎng)方形PQMN的邊QM在BC上,其余兩個(gè)頂點(diǎn)P,N分別在AB,AC上.
(Ⅰ)求這個(gè)長(zhǎng)方形零件PQMN面積S的最大值;
(Ⅱ)在這個(gè)長(zhǎng)方形零件PQMN面積最大時(shí),能否將余下的材料△APN,△BPQ,△NMC剪下再拼成(不計(jì)接縫用料及損耗)與長(zhǎng)方形PQMN大小一樣的長(zhǎng)方形?若能,試給出一種拼法;若不能,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

大潤(rùn)發(fā)超市進(jìn)了一批成本為8元/個(gè)的文具盒.調(diào)查發(fā)現(xiàn):這種文具盒每個(gè)星期的銷(xiāo)售量y(個(gè))與它的定價(jià)x(元/個(gè))的關(guān)系如圖所示:
(1)求這種文具盒每個(gè)星期的銷(xiāo)售量y(個(gè))與它的定價(jià)x(元/個(gè))之間的函數(shù)關(guān)系式(不必寫(xiě)出自變量x的取值范圍);
(2)每個(gè)文具盒定價(jià)是多少元時(shí),超市每星期銷(xiāo)售這種文具盒(不考慮其他因素)可獲得的利潤(rùn)最高?最高利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案