【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣ x2+ x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為點(diǎn)E.
(1)判斷△ABC的形狀,并說明理由;
(2)經(jīng)過B,C兩點(diǎn)的直線交拋物線的對稱軸于點(diǎn)D,點(diǎn)P為直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△PCD的面積最大時(shí),Q從點(diǎn)P出發(fā),先沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到拋物線的對稱軸上點(diǎn)M處,再沿垂直于拋物線對稱軸的方向運(yùn)動(dòng)到y(tǒng)軸上的點(diǎn)N處,最后沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)A處停止.當(dāng)點(diǎn)Q的運(yùn)動(dòng)路徑最短時(shí),求點(diǎn)N的坐標(biāo)及點(diǎn)Q經(jīng)過的最短路徑的長;
(3)如圖2,平移拋物線,使拋物線的頂點(diǎn)E在射線AE上移動(dòng),點(diǎn)E平移后的對應(yīng)點(diǎn)為點(diǎn)E′,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)A′,將△AOC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至△A1OC1的位置,點(diǎn)A,C的對應(yīng)點(diǎn)分別為點(diǎn)A1 , C1 , 且點(diǎn)A1恰好落在AC上,連接C1A′,C1E′,△A′C1E′是否能為等腰三角形?若能,請求出所有符合條件的點(diǎn)E′的坐標(biāo);若不能,請說明理由.
【答案】
(1)
解:△ABC為直角三角形,
當(dāng)y=0時(shí),即﹣ x2+ x+3=0,
∴x1=﹣ ,x2=3
∴A(﹣ ,0),B(3 ,0),
∴OA= ,OB=3 ,
當(dāng)x=0時(shí),y=3,
∴C(0,3),
∴OC=3,
根據(jù)勾股定理得,AC2=OB2+OC2=12,BC2=OB2+OC2=36,
∴AC2+BC2=48,
∵AB2=[3 ﹣(﹣ )]2=48,
∴AC2+BC2=AB2,
∴△ABC是直角三角形
(2)
解:如圖,
∵B(3 ,0),C(0,3),
∴直線BC解析式為y=﹣ x+3,
過點(diǎn)P作∥y軸,
設(shè)P(a,﹣ a2+ a+3),
∴G(a,﹣ a+3),
∴PG=﹣ a2+ a,
設(shè)點(diǎn)D的橫坐標(biāo)為xD,C點(diǎn)的橫坐標(biāo)為xC,
S△PCD= ×(xD﹣xC)×PG=﹣ (a﹣ )2+ ,
∵0<a<3 ,
∴當(dāng)a= 時(shí),S△PCD最大,此時(shí)點(diǎn)P( , ),
將點(diǎn)P向左平移 個(gè)單位至P′,連接AP′,交y軸于點(diǎn)N,過點(diǎn)N作MN⊥拋物線對稱軸于點(diǎn)M,
連接PM,點(diǎn)Q沿P→M→N→A,運(yùn)動(dòng),所走的路徑最短,即最短路徑的長為PM+MN+NA的長,
∴P( , )
∴P′( , ),
∵點(diǎn)A(﹣ ,0),
∴直線AP′的解析式為y= x+ ,
當(dāng)x=0時(shí),y= ,
∴N(0, ),
過點(diǎn)P′作P′H⊥x軸于點(diǎn)H,
∴AH= ,P′H= ,AP′= ,
∴點(diǎn)Q運(yùn)動(dòng)得最短路徑長為PM+MN+AN= + = ;
(3)
解:在Rt△AOC中,
∵tan∠OAC= = ,
∴∠OAC=60°,
∵OA=OA1,
∴△OAA1為等邊三角形,
∴∠AOA1=60°,
∴∠BOC1=30°,
∵OC1=OC=3,
∴C1( , ),
∵點(diǎn)A(﹣ ,0),E( ,4),
∴AE=2 ,
∴A′E′=AE=2 ,
∵直線AE的解析式為y= x+2,
設(shè)點(diǎn)E′(a, a+2),
∴A′(a﹣2 , ﹣2)
∴C1E′2=(a﹣2 )2+( +2﹣ )2= a2﹣ a+7,
C1A′2=(a﹣2 ﹣ )2+( ﹣2﹣ )2= a2﹣ a+49,
①若C1A′=C1E′,則C1A′2=C1E′2
即: a2﹣ a+7= a2﹣ a+49,
∴a= ,
∴E′( ,5),
②若A′C1=A′E′,
∴A′C12=A′E′2
即: a2﹣ a+49=28,
∴a1= ,a2= ,
∴E′( ,7+ ),或( ,7﹣ ),
③若E′A′=E′C1,
∴E′A′2=E′C12
即: a2﹣ a+7=28,
∴a1= ,a2= (舍),
∴E′( ,3+ ),
即,符合條件的點(diǎn)E′( ,5),( ,7+ ),或( ,7﹣ ),( ,3+ )
【解析】(1)先求出拋物線與x軸和y軸的交點(diǎn)坐標(biāo),再用勾股定理的逆定理判斷出△ABC是直角三角形;(2)先求出S△PCD最大時(shí),點(diǎn)P( , ),然后判斷出所走的路徑最短,即最短路徑的長為PM+MN+NA的長,計(jì)算即可;(3)△A′C1E′是等腰三角形,分三種情況分別建立方程計(jì)算即可.此題是二次函數(shù)綜合題,主要考查了函數(shù)極值的確定方法,等邊三角形的判定和性質(zhì),勾股定理的逆定理,等腰三角形的性質(zhì),解本題的關(guān)鍵是分類討論,也是解本題的難點(diǎn).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的最值的相關(guān)知識(shí),掌握如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a,以及對勾股定理的逆定理的理解,了解如果三角形的三邊長a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側(cè)的兩點(diǎn),連接BD并延長至點(diǎn)C,使得CD=BD,連接AC交⊙O于點(diǎn)F,連接AE、DE、DF.
(1)證明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度數(shù);
(3)設(shè)DE交AB于點(diǎn)G,若DF=4,cosB= ,E是 的中點(diǎn),求EGED的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出如下規(guī)定:兩個(gè)圖形G1和G2 , 點(diǎn)P為G1上任一點(diǎn),點(diǎn)Q為G2上任一點(diǎn),如果線段PQ的長度存在最小值,就稱該最小值為兩個(gè)圖形G1和G2之間的距離.在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn).
(1)點(diǎn)A的坐標(biāo)為A(1,0),則點(diǎn)B(2,3)和射線OA之間的距離為 , 點(diǎn)C(﹣2,3)和射線OA之間的距離為;
(2)如果直線y=x+1和雙曲線y= 之間的距離為 ,那么k=;(可在圖1中進(jìn)行研究)
(3)點(diǎn)E的坐標(biāo)為(1, ),將射線OE繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°,得到射線OF,在坐標(biāo)平面內(nèi)所有和射線OE,OF之間的距離相等的點(diǎn)所組成的圖形記為圖形M.
①請?jiān)趫D2中畫出圖形M,并描述圖形M的組成部分;(若涉及平面中某個(gè)區(qū)域時(shí)可以用陰影表示).
②將射線OE,OF組成的圖形記為圖形W,直線y=﹣2x﹣4與圖形M的公共部分記為圖形N,請求出圖形W和圖形N之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2 , 對于以下結(jié)論:
①abc>0;②a+3b+2c≤0;③對于自變量x的任意一個(gè)取值,都有 x2+x≥﹣ ;④在﹣2<x<﹣1中存在一個(gè)實(shí)數(shù)x0 , 使得x0=﹣ ,
其中結(jié)論錯(cuò)誤的是 (只填寫序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標(biāo)系中的圖象可能是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=kx+b與拋物線y= x2交于A(x1 , y1)、B(x2 , y2)兩點(diǎn),當(dāng)OA⊥OB時(shí),直線AB恒過一個(gè)定點(diǎn),該定點(diǎn)坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y=﹣x,雙曲線y= ,在l上取一點(diǎn)A(a,﹣a)(a>0),過A作x軸的垂線交雙曲線于點(diǎn)B,過B作y軸的垂線交l于點(diǎn)C,過C作x軸的垂線交雙曲線于點(diǎn)D,過D作y軸的垂線交l于點(diǎn)E,此時(shí)E與A重合,并得到一個(gè)正方形ABCD,若原點(diǎn)O在正方形ABCD的對角線上且分這條對角線為1:2的兩條線段,則a的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+2x﹣2m+1=0的兩實(shí)數(shù)根之積為負(fù),則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com