【題目】如圖,碼頭A在碼頭B的正東方向,兩個碼頭之間的距離為32海里,今有一貨船由碼頭A出發(fā),沿北偏西60°方向航行到達小島C處,此時測得碼頭B在南偏東45°方向,求碼頭A與小島C的距離.(≈1.732,結(jié)果精確到0.01海里)
【答案】解:作CD⊥AB交AB延長線于點D,
∠D=90°
由題意,得∠DCB=45°,∠CAD=90°﹣60°=30°,AB=32海里,
設(shè)CD=x海里,在Rt△DCB中,tan∠DCB=,tan45°==1,
BD=x,AD=AB+BD=32+x,tan30°==,
解得x=16+16,
∵∠CAD=30°,∠CDA=90°,
∴AC=2CD=32+32≈87.42海里,
答:碼頭A與小島C的距離約為87.42海里.
【解析】根據(jù)正切函數(shù),可得CD的長,根據(jù)直角三角形的性質(zhì),可得答案.
【考點精析】認真審題,首先需要了解關(guān)于方向角問題(指北或指南方向線與目標方向 線所成的小于90°的水平角,叫做方向角).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+px+q(p<0)的圖象與x軸交于A、B兩點,與y軸交于點C(0,﹣1),△ABC的面積為 .
(1)求該二次函數(shù)的關(guān)系式;
(2)過y軸上的一點M(0,m)作y軸的垂線,若該垂線與△ABC的外接圓有公共點,求m的取值范圍;
(3)在該二次函數(shù)的圖象上是否存在點D,使四邊形ACBD為直角梯形?若存在,求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
點E為矩形ABCD外一點,AE=DE,連接EB、EC分別與AD相交于點F、G.求證:
(1)△EAB≌△EDC;
(2)∠EFG=∠EGF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為支援災(zāi)區(qū),某校愛心活動小組準備用籌集的資金購買A、B兩種型號的學(xué)習(xí)用品共1000件.已知B型學(xué)習(xí)用品的單價比A型學(xué)習(xí)用品的單價多10元,用180元購買B型學(xué)習(xí)用品的件數(shù)與用120元購買A型學(xué)習(xí)用品的件數(shù)相同.
(1)求A、B兩種學(xué)習(xí)用品的單價各是多少元?
(2)若購買這批學(xué)習(xí)用品的費用不超過28000元,則最多購買B型學(xué)習(xí)用品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A在第一象限,⊙A與x軸交于B(2,0)、C(8,0)兩點,與y軸相切于點D,則點A的坐標是( 。
A.(5,4)
B.(4,5)
C.(5,3)
D.(3,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,AB≠CD,BD=AC.
(1)求證:AD=BC;
(2)若E、F、G、H分別是AB、CD、AC、BD的中點,求證:線段EF與線段GH互相垂直平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+2經(jīng)過點A(﹣1,0)和點B(4,0),且與y軸交于點C,點D的坐標為(2,0),點P(m,n)是該拋物線上的一個動點,連接CA,CD,PD,PB.
(1)求該拋物線的解析式;
(2)當△PDB的面積等于△CAD的面積時,求點P的坐標;
(3)當m>0,n>0時,過點P作直線PE⊥y軸于點E交直線BC于點F,過點F作FG⊥x軸于點G,連接EG,請直接寫出隨著點P的運動,線段EG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從一個建筑物的A處測得對面樓BC的頂部B的仰角為32°,底部C的俯角為45°,觀測點與樓的水平距離AD為31m,則樓BC的高度約為 m(結(jié)果取整數(shù)).(參考數(shù)據(jù):sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com