【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結(jié)論錯誤的是( )
A.二次函數(shù)y=ax2+bx+c的最大值為4
B.常數(shù)項(xiàng)c為3
C.一元二次方程ax2+bx+c=0的兩根之和為﹣2
D.使y≤3成立的x的取值范圍是x≥0
【答案】D
【解析】解:A、觀察圖象知最高點(diǎn)為(﹣1,4),故最大值為4正確,不符合題意; B、與y軸的交點(diǎn)為(0,3),故常數(shù)項(xiàng)為3,正確,不符合題意;
C、一元二次方程ax2+bx+c=0的兩根之和為﹣3+1=﹣2,正確,不符合題意;
D、使y≤3成立的x的取值范圍是x≤﹣2或y≥0,故錯誤,符合題意;
故選D.
【考點(diǎn)精析】掌握二次函數(shù)的性質(zhì)和二次函數(shù)的最值是解答本題的根本,需要知道增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減;如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果兩個(gè)三角形的兩條邊對應(yīng)相等,夾角互補(bǔ),那么這兩個(gè)三角形叫做互補(bǔ)三角形,如圖2,分別以△ABC的邊AB、AC為邊向外作正方形ABDE和ACGF,則圖中的兩個(gè)三角形就是互補(bǔ)三角形.
(1)圖1中的△ABC的BC邊上有一點(diǎn)D,線段AD將△ABC分成兩個(gè)互補(bǔ)三角形,則點(diǎn)D在BC邊的處.
(2)證明:圖2中的△ABC分割成兩個(gè)互補(bǔ)三角形面積相等;
(3)如圖3,在圖2的基礎(chǔ)上再以BC為邊向外作正方形BCHI,已知三個(gè)正方形面積分別是17、13、10.則圖3中六邊形DEFGHI的面積為 . (提示:可先利用圖4求出△ABC的面積)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,給出下列四組條件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。其中一定能判斷這個(gè)四邊形是平行四邊形的條件共有
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A( ,0),B(3 ,2),C(0,2).動點(diǎn)D以每秒1個(gè)單位的速度從點(diǎn)O出發(fā)沿OC向終點(diǎn)C運(yùn)動,同時(shí)動點(diǎn)E以每秒2個(gè)單位的速度從點(diǎn)A出發(fā)沿AB向終點(diǎn)B運(yùn)動.過點(diǎn)E作EF⊥AB,交BC于點(diǎn)F,連接DA、DF.設(shè)運(yùn)動時(shí)間為t秒.
(1)求∠ABC的度數(shù);
(2)當(dāng)t為何值時(shí),AB∥DF;
(3)設(shè)四邊形AEFD的面積為S.①求S關(guān)于t的函數(shù)關(guān)系式;
②若一拋物線y=﹣x2+mx經(jīng)過動點(diǎn)E,當(dāng)S<2 時(shí),求m的取值范圍(寫出答案即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F分別為平行四邊形ABCD的對邊AD、BC上的點(diǎn),且DE=BF,EM⊥AC于M,FN⊥AC于N,EF交AC于點(diǎn)O,
求證:(1)EM=FN;
(2)EF與MN互相平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為24厘米.甲、乙兩動點(diǎn)同時(shí)從頂點(diǎn)A出發(fā),甲以2厘米/秒的速度沿正方形的邊按順時(shí)針方向移動,乙以4厘米/秒的速度沿正方形的邊按逆時(shí)針方向移動,每次相遇后甲乙的速度均增加1厘米/秒且都改變原方向移動,則第四次相遇時(shí)甲與最近頂點(diǎn)的距離是______厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖甲是任意一個(gè)直角三角形ABC,它的兩條直角邊的長分別為a,b,斜邊長為c.如圖乙、丙那樣分別取四個(gè)與直角三角形ABC全等的三角形,放在邊長為a+b的正方形內(nèi).
(1)圖乙、圖丙中①②③都是正方形.由圖可知:①是以________為邊長的正方形,②是以________為邊長的正方形,③是以________為邊長的正方形;
(2)圖乙中①的面積為________,②的面積為________,圖丙中③的面積為________;
(3)圖乙中①②面積之和為__________;
(4)圖乙中①②的面積之和與圖丙中正方形③的面積有什么關(guān)系?為什么?由此你能得到關(guān)于直角三角形三邊長的關(guān)系嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】研究問題:一個(gè)不透明的盒中裝有若干個(gè)只有顏色不一樣的紅球與黃球,怎樣估算不同顏色球的數(shù)量?
操作方法:先從盒中摸出8個(gè)球,畫上記號放回盒中,再進(jìn)行摸球?qū)嶒?yàn),摸球?qū)嶒?yàn)的要求:先攪拌均勻,每次摸出一個(gè)球,放回盒中,再繼續(xù).
活動結(jié)果:摸球?qū)嶒?yàn)活動一共做了50次,統(tǒng)計(jì)結(jié)果如下表:
球的顏色 | 無記號 | 有記號 | ||
紅色 | 黃色 | 紅色 | 黃色 | |
摸到的次數(shù) | 18 | 28 | 2 | 2 |
推測計(jì)算:由上述的摸球?qū)嶒?yàn)可推算:
(1)盒中紅球、黃球各占總球數(shù)的百分比分別是多少?
(2)盒中有紅球多少個(gè)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com