【題目】如圖,邊長(zhǎng)為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后得到正方形AB′C′D′,邊B′C′DC交于點(diǎn)O,則四邊形AB′OD的面積是_________.

【答案】-1.

【解析】

根據(jù)題意可以推出ADO≌△ABO,所以重合部分的面積為2ADO的面積,進(jìn)而求出即可.

連接AO,連接B′C,

∵兩個(gè)正方形的邊長(zhǎng)都為1,將其中一個(gè)固定不動(dòng),另一個(gè)繞頂點(diǎn)A旋轉(zhuǎn)45°,

A,B′,C三點(diǎn)在一條直線上,

∴∠DAC=DCA=45°,

BO=BC,

RtADORtABO中,

,

RtADORtABO(HL),

OD=BO,

設(shè)DO=x,

BO=x,OC=1-x,

x2+x2=(1-x)2,

解得:x=-1-(不合題意舍去),或x=-1+,

∴四邊形AB′OD的面積=2SACM=2××1×(-1+)=-1,

故答案為:-1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在RtABC中,ABC=90°,點(diǎn)D是BC邊的中點(diǎn),分別以B、C為圓心,大于線段BC長(zhǎng)度一半的長(zhǎng)為半徑圓弧,兩弧在直線BC上方的交點(diǎn)為P,直線PD交AC于點(diǎn)E,連接BE,則下列結(jié)論:EDBC;②∠A=EBA;EB平分AED;ED=AB中,一定正確的是( )

A.①②③ B.①②④ C.①③④ D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了讓同學(xué)們了解自己的體育水平,八年級(jí)1班的體育老師對(duì)全班50名學(xué)生進(jìn)行了一次體育模擬測(cè)試(得分均為整數(shù)).成績(jī)滿(mǎn)分為10分,1班的體育委員根據(jù)這次測(cè)試成績(jī)制作了如下的統(tǒng)計(jì)圖:

1)根據(jù)統(tǒng)計(jì)圖所給的信息填寫(xiě)下表:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

男生

8

女生

8

8

2)若女生隊(duì)測(cè)試成績(jī)的方差為1.76,請(qǐng)計(jì)算男生隊(duì)測(cè)試成績(jī)的方差.并說(shuō)明在這次體育測(cè)試中,哪個(gè)隊(duì)的測(cè)試成績(jī)更整齊些?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,矩形ABCD中,AB6cmBC18cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O

1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長(zhǎng);

2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)PAFBA停止,點(diǎn)QCDEC停止.在運(yùn)動(dòng)過(guò)程中.

①已知點(diǎn)P的速度為每秒10cm,點(diǎn)Q的速度為每秒6cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)AC、PQ四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.

②若點(diǎn)PQ的運(yùn)動(dòng)路程分別為x、y(單位:cm,xy≠0),已知A、CP、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求xy滿(mǎn)足的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形 ABCD 中,AB=6cm,AD=8cm,直線 EF 從點(diǎn) A 出發(fā)沿 AD 方向勻速運(yùn)動(dòng),速度是 2cm/s,運(yùn)動(dòng)過(guò)程中始終保持 EFACF

AD E,交 DC 于點(diǎn) F;同時(shí),點(diǎn) P 從點(diǎn) C 出發(fā)沿 CB 方向勻速運(yùn)動(dòng),速度是 1cm/s,連接 PE、PF,設(shè)運(yùn)動(dòng)時(shí)間 ts)(0<t<4).

(1)當(dāng) t=1 時(shí),求 EF 長(zhǎng);

(2) t 為何值時(shí),四邊形 EPCD 為矩形;

(3)設(shè)PEF 的面積為 Scm2),求出面積 S 關(guān)于時(shí)間 t 的表達(dá)式;

(4)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻使 SPC FS 矩形 ABCD=3:16?若存在, 求出 t 的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為美化校園環(huán)境,某校計(jì)劃在一塊長(zhǎng)為100米,寬為60米的長(zhǎng)方形空地上修建一個(gè)長(zhǎng)方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為米.

1)如果通道所占面積是整個(gè)長(zhǎng)方形空地面積的,求出此時(shí)通道的寬;

2)如果通道寬(米)的值能使關(guān)于的方程有兩個(gè)相等的實(shí)數(shù)根,并要求修建的通道的寬度不少于5米且不超過(guò)12米,求出此時(shí)通道的寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 某校為了了解學(xué)生的安全意識(shí),在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查.根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識(shí)分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個(gè)層次,并繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖,如圖所示:

根據(jù)以上信息,解答下列問(wèn)題:

1)這次調(diào)查一共抽取了______名學(xué)生,將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)扇形統(tǒng)計(jì)圖中,“較強(qiáng)”層次所占圓心角的大小為_(kāi)_____°;

3)若該校有3200名學(xué)生,現(xiàn)要對(duì)安全意識(shí)為“淡薄”、“一般”的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)全校需要強(qiáng)化安全教育的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉辦的八年級(jí)學(xué)生數(shù)學(xué)素養(yǎng)大賽共設(shè)個(gè)項(xiàng)目:七巧板拼圖,趣題巧解,數(shù)學(xué)應(yīng)用,每個(gè)項(xiàng)目得分都按一定百分比折算后計(jì)入總分,總分高的獲勝,下表為小米和小麥兩位同學(xué)的得分情況(單位:分):

七巧板拼圖

趣題巧解

數(shù)學(xué)應(yīng)用

小米

小麥

若七巧板拼圖,趣題巧解,數(shù)學(xué)應(yīng)用三項(xiàng)得分分別按折算計(jì)入總分,最終誰(shuí)能獲勝?

若七巧板拼圖按折算,小麥 (填“可能”或“不可能”)獲勝.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形紙片中,,將紙片沿對(duì)角線對(duì)折,邊與邊交于點(diǎn),此時(shí)恰為等邊三角形,則重疊部分的面積為_________

查看答案和解析>>

同步練習(xí)冊(cè)答案