【題目】如圖,四邊形ABCD是長方形,四邊形AEFG是正方形,點E,G分別在AB,AD上,連接FC,過點E作EH∥FC交BC于點H.若∠BCF=30°,CD=4,CF=6,則正方形AEFG的面積為( )
A. 1B. 2C. 3D. 4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖中有四條互相不平行的直線L1、L2、L3、L4所截出的七個角.關(guān)于這七個角的度數(shù)關(guān)系,下列何者正確( )
A. ∠2=∠4+∠7 B. ∠3=∠1+∠6 C. ∠1+∠4+∠6=180° D. ∠2+∠3+∠5=360°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】首先,我們學(xué)習(xí)一道“最值”問題的解答:
問題:已知x>0,求的最小值.
解答:對于x>0,我們有:
當(dāng),即時,上述不等式取等號,所以的最小值是
由解答知,的最小值是.
弄清上述問題及解答方法之后,解答下述問題:
(1)求的最小值.
(2)在直角坐標(biāo)系 xOy 中,一次函數(shù)的圖象與 x 軸、 y 軸分別交于 A 、 B 兩點.
①求 A 、 B 兩點的坐標(biāo);
②求當(dāng)OAB 的面積值等于時,用b 表示 k ;
③在②的條件下,求AOB 面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年元旦期間,某商場打出促銷廣告,如表所示.
優(yōu)惠 條件 | 一次性購物不超過200元 | 一次性購物超過200元,但不超過500元 | 一次性購物超過500元 |
優(yōu)惠 辦法 | 沒有優(yōu)惠 | 全部按九折優(yōu)惠 | 其中500元仍按九折優(yōu)惠,超過500元部分按八折優(yōu)惠 |
小欣媽媽兩次購物分別用了134元和490元.
(1)小欣媽媽這兩次購物時,所購物品的原價分別為多少?
(2)若小欣媽媽將兩次購買的物品一次全部買清,則她是更節(jié)省還是更浪費?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1,△ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2,△AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn=____.(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠甲、乙兩人加工同一種零件,每小時甲比乙多加工10個這種零件,甲加工150個這種零件所用的時間與乙加工120個這種零件所用的時間相等,
(1)甲、乙兩人每小時各加工多少個這種零件?
(2)該工廠計劃加工920個零件,甲參與加工這批零件不超過12天,則乙至少加工多少天才能加工完這批零件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某加工廠購進甲、乙兩種原料,若甲原料的單價為元千克,乙原料的單價為元千克.現(xiàn)該工廠預(yù)計用不多于萬元且不少于萬元的資金購進這兩種原料共千克.
(l)若需購進甲原料千克,請求出的取值范圍;
(2)經(jīng)加工后:甲原料加工的產(chǎn)品,利潤率為;每一千克乙原料加工的產(chǎn)品售價為元.則應(yīng)該怎樣安排進貨,才能使銷售的利潤最大?
(3)在(2)的條件下,為了促銷,公司決定每售出一千克乙原料加工的產(chǎn)品,返還顧客現(xiàn)金元,而甲原料加工的產(chǎn)品售價不變,要使所有進貨方案獲利相同,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天,小明來到體育館看球賽,進場時,發(fā)現(xiàn)門票還在家里,此時離比賽開始還有25,于是立即步行回家取票同時,他父親從家里出發(fā)騎自行車以他3倍的速度給他送票,兩人在途中相遇,相遇后小明立即坐父親的自行車趕回體育館.如圖中線段AB、OB分別表示父子倆送票、取票過程中離體育館的路程與所用時間之間的圖像,結(jié)合圖像解答下列問題(假設(shè)騎自行車和步行的速度始終保持不變):
(1)圖中O點表示________;A點表示________;B點表示________.
(2)從圖中可知,小明家離體育館________m,父子倆在出發(fā)后________相遇.
(3)你能求出父親與小明相遇時距離體育館還有多遠?
(4)小明能否在比賽開始之前趕回體育館?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com