8.如圖,拋物線y=ax2+c(a>0)經(jīng)過梯形ABCD的四個頂點,梯形的底AD在x軸上,其中A(-2,0),B(-1,-3).
(1)求拋物線的解析式;
(2)點M為y軸上任意一點,當(dāng)點M到A、B兩點的距離之和為最小時,求此時點M的坐標(biāo).

分析 (1)將A、B點的坐標(biāo)代入拋物線的解析式中即可求出待定系數(shù)的值;
(2)由于A、D關(guān)于拋物線對稱軸即y軸對稱,那么連接BD,BD與y軸的交點即為所求的M點,可先求出直線BD的解析式,即可得到M點的坐標(biāo).

解答 解:(1)由題意可得:$\left\{\begin{array}{l}{4a+c=0}\\{a+c=-3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=1}\\{c=-4}\end{array}\right.$;
∴拋物線的解析式為:y=x2-4;

(2)由于A、D關(guān)于拋物線的對稱軸(即y軸)對稱,連接BD.
則BD與y軸的交點即為M點;
設(shè)直線BD的解析式為:y=kx+b(k≠0),則有:
$\left\{\begin{array}{l}{-k+b=-3}\\{2k+b=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=1}\\{b=-2}\end{array}\right.$;
∴直線BD的解析式為y=x-2,點M(0,-2).

點評 此題主要考查了二次函數(shù)解析式的確定、函數(shù)圖象交點及圖形面積的求法,軸對稱的性質(zhì)等知識的綜合應(yīng)用能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.下列調(diào)查適合抽樣調(diào)查的是(  )
A.審核書稿中的錯別字
B.對某中學(xué)七年級(1)班的學(xué)生早餐是否有喝牛奶的習(xí)慣進(jìn)行調(diào)查
C.對八名同學(xué)的身高情況進(jìn)行調(diào)查
D.對中學(xué)生目前的睡眠情況進(jìn)行調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.2016年11月,宜賓市某中學(xué)八年級五班同學(xué)紛紛捐出自己的零花錢,為建檔立卡的貧困學(xué)生獻(xiàn)愛心,該班第2小組8名同學(xué)捐款數(shù)額如下(單位:元):12,5,10,5,20,10,10,8.這組捐款數(shù)據(jù)中,“10”出現(xiàn)的頻率是(  )
A.25%B.37.5%C.30%D.32.5%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.計算:-2-2+(-$\frac{1}{2}$)2+20160=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.如圖所示的拋物線是二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列結(jié)論:①abc>0;②b+2a=0;③拋物線與x軸的另一個交點為(4,0);④a+c>b,其中正確的結(jié)論有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.(1)(ab22•(-a3b)3÷(-5ab);                   
(2)(x+1)2-(x+2)(x-2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.在⊙O中,弦AB=4,AC=2$\sqrt{6}$,半徑為2$\sqrt{2}$,則∠BAC=75°或15°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.當(dāng)x=2時,代數(shù)式ax3+bx+1的值為5,那么當(dāng)x=-2時,這個代數(shù)式的值為-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.下列大學(xué)的校徽圖案中,是軸對稱圖形的是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案