【題目】如圖,在中,,以為直徑的與相交于點(diǎn)E,連接CE.
(1)求證:;
(2)如果的面積為3,求的面積;
(3)如圖的角平分線BD交AC于點(diǎn)D,于點(diǎn)交于點(diǎn)F,連接,求證:.
【答案】(1)見解析;(2)6;(3)見解析
【解析】
(1)利用直角和公共角證相似;
(2)利用等腰直角三角形得到的相似比,再結(jié)合相似三角形面積比等于相似比的平方即可;
(3)設(shè)與交于點(diǎn)M,由圖的角平分線BD,可得CD=CM,再結(jié)合三線合一可得 ,最后由半徑相等得,可得內(nèi)錯(cuò)角相等,所以.
(1)∵為⊙的直徑,
∴.
∵,
∴.
又∵,
∴∽.
(2)∵,,
∴.
∴.
∴.
在Rt中,由勾股定理,得.
∴.
∵∽,
∴.
∵,
∴,即的面積等于6.
(3)設(shè)與交于點(diǎn)M.
∵平分,
∴
∵,
∴,.
∴.
∵,
∴
∴.
∵,
∴平分.
∴
∵,
∴.
∴.
∴∥.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,中,,.動(dòng)點(diǎn)在的邊上按的路線勻速移動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí)停止移動(dòng);動(dòng)點(diǎn)以的速度在的邊上按的路線勻速移動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí)停止移動(dòng).已知點(diǎn)、點(diǎn)同時(shí)開始移動(dòng),同時(shí)停止移動(dòng)(即同時(shí)到達(dá)各自的終止位置).設(shè)動(dòng)點(diǎn)移動(dòng)的時(shí)間為,的面積為,與的函數(shù)關(guān)系如圖②所示.
(1)圖①中 ,圖②中 ;
(2)求與的函數(shù)表達(dá)式;
(3)當(dāng)為何值時(shí),為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,是弧的中點(diǎn),作點(diǎn)關(guān)于弦的對(duì)稱點(diǎn),連接并延長(zhǎng)交于點(diǎn),過點(diǎn)作于點(diǎn),若,則等于_________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點(diǎn)C、D,若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOB中,∠AOB=90°,OA=6,OB=8,動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿著OA方向以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著AB方向也以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5),以P為圓心,PA長(zhǎng)為半徑的⊙P與AB、OA的另一個(gè)交點(diǎn)分別為C、D,連結(jié)CD、CQ.
⑴ 當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí),求t的值;
⑵ 若△ACQ是等腰三角形,求t的值;
⑶ 若⊙P與線段QC只有一個(gè)公共點(diǎn),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知菱形ABCD中,對(duì)角線AC和BD相交于點(diǎn)O,AC=8,BD=6,動(dòng)點(diǎn)P在邊AB上運(yùn)動(dòng),以點(diǎn)O為圓心,OP為半徑作⊙O,CQ切⊙O于點(diǎn)Q.則在點(diǎn)P運(yùn)動(dòng)過程中,切線CQ的長(zhǎng)的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C.點(diǎn)P是該函數(shù)圖象上的動(dòng)點(diǎn),且位于第一象限,設(shè)點(diǎn)P的橫坐標(biāo)為x.
(1)寫出線段AC, BC的長(zhǎng)度:AC= ,BC= ;
(2)記△BCP的面積為S,求S關(guān)于x的函數(shù)表達(dá)式;
(3)過點(diǎn)P作PH⊥BC,垂足為H,連結(jié)AH,AP,設(shè)AP與BC交于點(diǎn)K,探究:是否存在四邊形ACPH為平行四邊形?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由,并求出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五張正面分別寫有數(shù)字:﹣3,﹣2,0,1,2的卡片,它們的背面完全相同,現(xiàn)將這五張卡片背面朝上洗勻.
(1)從中任意抽取一張卡片,則所抽卡片上數(shù)字的絕對(duì)值不小于1的概率是 ;
(2)先從中任意抽取一張卡片,以其正面數(shù)字作為m的值,然后再?gòu)氖S嗟目ㄆ须S機(jī)抽一張,以其正面的數(shù)字作為n的值,請(qǐng)用列表法或畫樹狀圖法,求點(diǎn)Q(m,n)在第四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線與x軸相交于A、B兩點(diǎn)(A左B右),與y軸交于點(diǎn)C.其頂點(diǎn)為D.
(1)求點(diǎn)D的坐標(biāo)和直線BC對(duì)應(yīng)的一次函數(shù)關(guān)系式;
(2)若正方形PQMN的一邊PQ在線段AB上,另兩個(gè)頂點(diǎn)M、N分別在BC、AC上,試求M、N兩點(diǎn)的坐標(biāo);
(3)如圖1,E是線段BC上的動(dòng)點(diǎn),過點(diǎn)E作DE的垂線交BD于點(diǎn)F,求DF的最小值.
(圖1) (圖2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com