如圖,已知P是正方形ABCD內(nèi)一點(diǎn),PA=1,PB=2,PC=3,以點(diǎn)B為旋轉(zhuǎn)中心,將△ABP沿順時(shí)針方向旋轉(zhuǎn),使點(diǎn)A與點(diǎn)C重合,這時(shí)P點(diǎn)旋轉(zhuǎn)到G點(diǎn).
(1)請(qǐng)畫出旋轉(zhuǎn)后的圖形,并說明此時(shí)△ABP以點(diǎn)B為旋轉(zhuǎn)中心旋轉(zhuǎn)了多少度?
(2)求出PG的長(zhǎng)度;
(3)請(qǐng)你猜想△PGC的形狀,并說明理由.

【答案】分析:(1)因?yàn)椤螦BC=90°,將△ABP沿順時(shí)針方向旋轉(zhuǎn),使點(diǎn)A與點(diǎn)C重合時(shí),旋轉(zhuǎn)角為∠ABC=90°;
(2)連接PG,證明△BPG為等腰直角三角形,BP=BG=2,由勾股定理可求PG;
(3)由旋轉(zhuǎn)的性質(zhì)可知CG=AP=1,已知PC=3,由(2)可知PG,利用勾股定理的逆定理,判斷△PGC為直角三角形.
解答:解:(1)旋轉(zhuǎn)后的△BCG如圖所示,旋轉(zhuǎn)角為∠ABC=90°;

(2)連接PG,由旋轉(zhuǎn)的性質(zhì)可知BP=BG,∠PBG=∠ABC=90°,
∴△BPG為等腰直角三角形,
又BP=BG=2,
∴PG==2;

(3)由旋轉(zhuǎn)的性質(zhì)可知CG=AP=1,已知PC=3,
由(2)可知PG=2,
∵PG2+CG2=(22+12=9,PC2=9,
∴PG2+CG2=PC2
∴△PGC為直角三角形.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),勾股定理及其逆定理的運(yùn)用.關(guān)鍵是由旋轉(zhuǎn)角為90°,對(duì)應(yīng)邊相等,得出等腰直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,已知P是正方形ABCD內(nèi)一點(diǎn),要使△APD≌△BPC,只需增加的一個(gè)條件是
PA=PB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知P是正方形ABCD內(nèi)一點(diǎn),PA=1,PB=2,PC=3,以點(diǎn)B為旋轉(zhuǎn)中心,將△ABP沿順時(shí)針方向旋轉(zhuǎn),使點(diǎn)A與點(diǎn)C重合,這時(shí)P點(diǎn)旋轉(zhuǎn)到G點(diǎn).
(1)請(qǐng)畫出旋轉(zhuǎn)后的圖形,并說明此時(shí)△ABP以點(diǎn)B為旋轉(zhuǎn)中心旋轉(zhuǎn)了多少度?
(2)求出PG的長(zhǎng)度;
(3)請(qǐng)你猜想△PGC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知ABCD是正方形,以CD為一邊向CD兩旁作等邊三角形PCD和等邊三角形QCD,那么tan∠PQB的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知P是正方形ABCD內(nèi)一點(diǎn),△PBC是等邊三角形,若△PAD的外接圓半徑為a,則正方形ABCD邊長(zhǎng)為(
A、
1
2
B、
3
2
a
C、a
D、
2
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知E是正方形ABCD的邊CD的中點(diǎn),點(diǎn)F在邊CD上,且∠BAE=∠FAE,
求證:AF=AD+CF.

查看答案和解析>>

同步練習(xí)冊(cè)答案