【題目】當(dāng)時(shí),二次函數(shù)有最小值為,則的值為________.
【答案】或
【解析】
先求出二次函數(shù)的對(duì)稱軸為直線x=m,然后分①m<0時(shí),x=0函數(shù)有最小值,②0≤m≤2時(shí),x=m函數(shù)有最小值,③m>2時(shí),x=2函數(shù)有最小值分別列方程求解即可.
∵y=x2-2mx+m2+2m=(x-m)2+2m,
∴二次函數(shù)的對(duì)稱軸為直線x=m,
①m<0時(shí),x=0函數(shù)有最小值,
此時(shí),m2+2m=3,
解得m1=-3,m2=1(舍去),
②0≤m≤2時(shí),x=m函數(shù)有最小值,
此時(shí),2m=3,
解得m=,
③m>2時(shí),x=2函數(shù)有最小值,
此時(shí),4-4m+m2+2m=3,
整理得,m2-2m+1=0,
解得m=1(舍去),
綜上所述,m的值為或-3.
故答案為:或-3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AM是△ABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合).DE∥AB交AC于點(diǎn)F,CE∥AM,連結(jié)AE.
(1)如圖1,當(dāng)點(diǎn)D與M重合時(shí),求證:四邊形ABDE是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)D不與M重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
(3)如圖3,延長(zhǎng)BD交AC于點(diǎn)H,若BH⊥AC,且BH=AM.
①求∠CAM的度數(shù);
②當(dāng)FH=,DM=4時(shí),求DH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我市某一城市美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo),經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,若由甲隊(duì)先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?
(2)甲隊(duì)施工一天,需付工程款3.5萬(wàn)元,乙隊(duì)施工一天需付工程款2萬(wàn)元.若該工程計(jì)劃在70天內(nèi)完成,在不超過(guò)計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成工程省錢(qián)?還是由甲乙兩隊(duì)全程合作完成該工程省錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王教授和他的孫子小強(qiáng)星期天一起去爬山,來(lái)到山腳下,小強(qiáng)讓爺爺先上山,然后追趕爺爺,如圖所示,兩條線段分別表示小強(qiáng)和爺爺離開(kāi)山腳的距離(米)與爬山所用時(shí)間(分)的關(guān)系(小強(qiáng)開(kāi)始爬山時(shí)開(kāi)始計(jì)時(shí)),請(qǐng)看圖回答下列問(wèn)題:
(1)爺爺比小強(qiáng)先上了多少米?山頂離山腳多少米?
(2)誰(shuí)先爬上山頂?小強(qiáng)爬上山頂用了多少分鐘?
(3)圖中兩條線段的交點(diǎn)表示什么意思?這時(shí)小強(qiáng)爬山用時(shí)多少?離山腳多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,且關(guān)于的一元二次方程沒(méi)有實(shí)數(shù)根,有下列結(jié)論:①②③④其中,正確的是結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在四邊形ABCD的邊BC的延長(zhǎng)線上取一點(diǎn)E,在直線BC的同側(cè)作一個(gè)以CE為底的等腰△CEF,且滿足∠B+∠F=180°,則稱三角形CEF為四邊形ABCD的“伴隨三角形”.
(1)如圖1,若△CEF是正方形ABCD的“伴隨三角形”:
①連接AC,則∠ACF= ;
②若CE=2BC,連接AE交CF于H,求證:H是CF的中點(diǎn);
(2)如圖2,若△CEF是菱形ABCD的“伴隨三角形”,∠B=60°,M是線段AE的中點(diǎn),連接DM、FM,猜想并證明DM與FM的位置與數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(t,y1),B(t+2,y2)在拋物線y=﹣x2的圖象上,且﹣2≤t≤2,則線段AB長(zhǎng)的最大值______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中, ,,將沿折疊,使點(diǎn)落在直角邊上的點(diǎn)處,設(shè)與邊分別交于點(diǎn),如果折疊后與均為等腰三角形,那么__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com