【題目】已知:如圖,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線BC1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

1)求BC邊的長(zhǎng);

2)當(dāng)△ABP為直角三角形時(shí),求t的值;

3)當(dāng)△ABP為等腰三角形時(shí),求t的值

【答案】

【解析】試題分析:(1)直接根據(jù)勾股定理求出BC的長(zhǎng)度;

2)當(dāng)△ABP為直角三角形時(shí),分兩種情況:當(dāng)∠APB為直角時(shí),當(dāng)∠BAP為直角時(shí),分別求出此時(shí)的t值即可;

3)當(dāng)△ABP為等腰三角形時(shí),分三種情況:當(dāng)AB=BP時(shí);當(dāng)AB=AP時(shí);當(dāng)BP=AP時(shí),分別求出BP的長(zhǎng)度,繼而可求得t值.

試題解析:(1)在Rt△ABC中,BC2=AB2-AC2=52-32=16,

∴BC=4cm);

2)由題意知BP=tcm,

當(dāng)∠APB為直角時(shí),點(diǎn)P與點(diǎn)C重合,BP=BC=4cm,即t=4;

當(dāng)∠BAP為直角時(shí),BP=tcm,CP=t-4cm,AC=3cm,

Rt△ACP中,

AP2=32+t-42,

Rt△BAP中,AB2+AP2=BP2,

即:52+[32+t-42]=t2,

解得:t=,

故當(dāng)ABP為直角三角形時(shí),t=4t=;

3當(dāng)AB=BP時(shí),t=5

當(dāng)AB=AP時(shí),BP=2BC=8cmt=8;

當(dāng)BP=AP時(shí),AP=BP=tcm,CP=|t-4|cm,AC=3cm,

Rt△ACP中,AP2=AC2+CP2

所以t2=32+t-42

解得:t=,

綜上所述:當(dāng)ABP為等腰三角形時(shí),t=5t=8t=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是我國(guó)某海域內(nèi)的一個(gè)小島,其平面圖如圖甲所示,小明據(jù)此構(gòu)造出該島的一個(gè)數(shù)學(xué)模型如圖乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=3千米,請(qǐng)據(jù)此解答如下問(wèn)題:

(1)求該島的周長(zhǎng)和面積;(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732,≈2.449)

(2)求∠ACD的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)B為第一象限內(nèi)一點(diǎn),點(diǎn)Ax軸正半軸上一點(diǎn),分別連接OB,AB,AOB為等邊三角形,點(diǎn)B的橫坐標(biāo)為4

1)如圖1,求線段OA的長(zhǎng);

2)如圖2,點(diǎn)M在線段OA上(點(diǎn)M不與點(diǎn)O、點(diǎn)A重合),點(diǎn)N在線段BA的延長(zhǎng)線上,連接MB,MN,BMMN,設(shè)OM的長(zhǎng)為t,BN的長(zhǎng)為d,求dt的關(guān)系式(不要求寫(xiě)出t的取值范圍);

3)在(2)的條件下,點(diǎn)D為第四象限內(nèi)一點(diǎn),分別連接ODMD,ND,MND為等邊三角形,線段MA的垂直平分線交OD的延長(zhǎng)線于點(diǎn)E,交MA于點(diǎn)H,連接AE,交ND于點(diǎn)F,連接MF,若MFAM+AN,求點(diǎn)E的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃從甲、乙兩種產(chǎn)品中選擇一種生產(chǎn)并銷(xiāo)售,每年產(chǎn)銷(xiāo) x 件,已知產(chǎn)銷(xiāo)兩種產(chǎn)品的有關(guān)信息 如下:

產(chǎn)品

每件售價(jià)/萬(wàn)元

每件成本/萬(wàn)元

年最大產(chǎn)銷(xiāo)量/件

6

3

200

20

10

80

甲、乙兩產(chǎn)品每年的其他費(fèi)用與產(chǎn)銷(xiāo)量的關(guān)系分別是: y1 kx b y2 ax2 m ,它們的函數(shù)圖象分別如圖(1)和圖(2)所示.

(1)求: y1 y2 的函數(shù)解析式;

(2)分別求出產(chǎn)銷(xiāo)兩種產(chǎn)品的最大利潤(rùn);(利潤(rùn)=銷(xiāo)售額-成本-其它費(fèi)用)

(3)若通過(guò)技術(shù)改進(jìn),甲產(chǎn)品的每件成本降到 a 萬(wàn)元,乙產(chǎn)品的年最大產(chǎn)銷(xiāo)量可以達(dá)到 110 件,其它都不變,為獲得最大利潤(rùn),該公式應(yīng)該選擇產(chǎn)銷(xiāo)哪種產(chǎn)品?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點(diǎn)C落在DP(PAB中點(diǎn))所在的直線上,得到經(jīng)過(guò)點(diǎn)D的折痕DE,則∠DEC的大小為( )

A. 78° B. 45° C. 60° D. 75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用小立方體搭一個(gè)幾何體,使它的主視圖和俯視圖如圖所示,俯視圖中小正方形中字母表示在該位置小立方體的個(gè)數(shù),請(qǐng)解答下列問(wèn)題:

(1)a= ,b= ,c= ;

(2)這個(gè)幾何體最少由 個(gè)小立方體搭成,最多由 個(gè)小立方體搭成;

(3)當(dāng)d=2,e=1,f=2時(shí),畫(huà)出這個(gè)幾何體的左視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,動(dòng)點(diǎn)MA點(diǎn)出發(fā),以的速度沿線段AB向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)NB點(diǎn)出發(fā),以的速度沿線段BC向點(diǎn)C運(yùn)動(dòng);點(diǎn)M與點(diǎn)N同時(shí)出發(fā),且當(dāng)M點(diǎn)運(yùn)動(dòng)到B點(diǎn)時(shí),M,N兩點(diǎn)同時(shí)停止運(yùn)動(dòng)設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為,連接MN,將沿MN折疊,使點(diǎn)B落在點(diǎn)處,得到,若,則t的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,∠B=90°,AB=16cmBC=12cm,P、QABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開(kāi)始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開(kāi)始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.

1)出發(fā)2秒后,求PQ的長(zhǎng).

2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)幾秒鐘后,PQB能形成等腰三角形?

3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,經(jīng)過(guò)原點(diǎn)O的拋物線(a0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).

(1)求這條拋物線的表達(dá)式;

(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿(mǎn)足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);

(3)如圖2,若點(diǎn)M在這條拋物線上,且MBO=ABO,在(2)的條件下,是否存在點(diǎn)P,使得POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案