【題目】如圖,△ABC內接于O,且ABO的直徑,ODAB,與AC交于點E,∠D=2∠A

(1)求證:CDO的切線;

(2)求證:DEDC;

(3)若OD=5,CD=3,求AC的長.

【答案】(1)見解析;(2)見解析;(3)

【解析】

(1))連接OC.∠D=∠COB.OD⊥AB,∠COB+∠COD=90°.可證∠D+∠COD=90°.即∠DCO=90°;

(2)由∠DCE+∠ACO=90°,∠AEO+∠A=90°∠A=∠ACO,∠DEC=∠AEO,可得∠DEC=∠DCE ,即DE=DC.

(3)先求得OC=4,AB=2OC=8, OE=OD-DE=2,再證△AOE∽△ACB,,

AC=x,則BC=

△ABC中,由AC2+BC2=AB2,求得x=.

證明:(1)連接OC

⊙O中,OA=OC,

∴∠ACO=∠A,故∠COB=2∠A.

∵∠D=2∠A,

∴∠D=∠COB.

∵OD⊥AB,∴∠COB+∠COD=90°.

∴∠D+∠COD=90°.即∠DCO=90°.

OC⊥DC,又點C⊙O上,

CD是⊙O的切線.

(2)∵∠DCO=90°,∴∠DCE+∠ACO=90°.

∵OD⊥AB,∴∠AEO+∠A=90°.

∵∠A=∠ACO,∠DEC=∠AEO,

∴∠DEC=∠DCE

∴DE=DC.

3)∵∠DCO90°,OD5,DC3

OC4,

AB2OC8,又DEDC,OEODDE2

AOEACB中,

A=∠A,∠AOE=∠ACB90°

∴△AOEACB

,

ACx,則BC

ABC中,AC2BC2AB2,求得x

所以AC的長為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】西安市的大雁塔又名“慈恩寺塔”,是國家級文物保護單位,玄奘為保存由天竺經(jīng)絲綢之路帶回長安的經(jīng)卷主持修建了大雁塔,最初五層,后加蓋至九層,是西安市的標志性建筑之一,某校社會實踐小組為了測量大雁塔的高度,在地面上C處垂直于地面豎立了高度為2米的標桿CD,這時地面上的點E,標桿的頂端點D,大雁塔的塔尖點B正好在同一直線上,測得EC=4米,將標桿CD向后平移到點G處,這時地面上的點F,標桿的頂端點H,大雁塔的塔尖點B正好在同一直線上(F,點G,點E,點C與塔底處的點A在同一直線上),這時測得FG=6米,GC=53米,請你根據(jù)以上數(shù)據(jù),計算大雁塔的高度AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是半圓的直徑,為半圓的圓心,是弦,取的中點,過點的延長線于點

1)求證:是半圓的切線;

2)當,時,求的長;

3)當時,直接寫出面積最大時,點到直徑的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國古代算書《算法統(tǒng)宗》中有這樣一道題:甲趕群羊逐草茂,乙拽肥羊隨其后,戲問甲及一百否?甲云所說無差謬,若得這般一群湊,再添半群小半(注:四分之一的意思)群,得你一只來方湊,玄機奧妙誰參透?大意是說:牧羊人趕著一群羊去尋找草長得茂盛的地方放牧,有一個過路人牽著1只肥羊從后面跟了上來,他對牧羊人說你趕的這群羊大概有100只吧?牧羊人答道:如果這一群羊加上1倍,再加上原來羊群的一半,又加上原來這群羊的四分之一,連你牽著的這只肥羊也算進去,才剛好滿100只你知道牧羊人放牧的這群羊一共有多少只嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,DBC的中點,點GAD上(點G不與A重合),過點G的直線交ABE,交射線AC于點F,設AE=xAB,AF=yACx,y≠0).

1)如圖1,若△ABC為等邊三角形,點GD重合,∠BDE=30,求證:△AEF∽△DEA;

2)如圖2,若點GD重合,求證:x+y=2xy;

3)如圖3,若AG=nGD,x=y=,直接寫出n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線x軸交于A、B兩點,與y軸交于C點,連接、,已知點A、C的坐標為、

1)求拋物線的表達式;

2)點P是線段下方拋物線上的一動點,如果在x軸上存在點Q,使得以點BC、P、Q為頂點的四邊形為平行四邊形,求點Q的坐標;

3)如圖2,若點M內一動點,且滿足,過點M,垂足為N,設的內心為I,試求的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某個體地攤經(jīng)銷一批小商品,每件商品的成本為8元.據(jù)市場分析,銷售單價定為10元時,每天能售出200件;現(xiàn)采用提高商品售價,減少銷售量的辦法增加利潤,若銷售單價每漲1元,每天的銷售量就減少20件,設銷售單價為每件x元,銷售量為y件.

1)寫出yx函數(shù)關系式.

2)若想每天的銷售利潤恰為640元,同時又要使顧客得到實惠,這種小商品每件售價應定為多少元?

3)這種小商品每件售價應定為多少元時,每天的銷售利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GEBC,垂足為點E,GFCD,垂足為點F.

(1)證明與推斷:

①求證:四邊形CEGF是正方形;

②推斷:的值為   

(2)探究與證明:

將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關系,并說明理由:

(3)拓展與運用:

正方形CEGF在旋轉過程中,當B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CGAD于點H.若AG=6,GH=2,則BC=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2bxcab,c為常數(shù),a0)經(jīng)過點(0,2),且關于直線x=﹣1對稱,(x1,0)是拋物線與x軸的一個交點,有下列結論,其中結論錯誤的是( )

A.方程ax2bxc2的一個根是x=﹣2

B.x12,則拋物線與x軸的另一個交點為(﹣4,0)

C.m4時,方程ax2bxcm有兩個相等的實數(shù)根,則a=﹣2

D.x0時,2y3,則a

查看答案和解析>>

同步練習冊答案