【題目】同時拋擲3枚硬幣做游戲,其中1元硬幣1枚,5角硬幣兩枚.

1)求3枚硬幣同時正面朝上的概率.

2)小張、小王約定:正面朝上按面值算,背面朝上按0元算.3枚落地后,若面值和為1.5元,則小張獲得1分;若面值和為1元,則小王得1分.誰先得到10分,誰獲勝,請問這個游戲是否公平?并說明理由.

【答案】1;(2)公平,見解析

【解析】

1)用列表法或樹狀圖法表示出所有可能出現(xiàn)的結(jié)果,進(jìn)而求出3枚硬幣同時正面朝上的概率.

2)求出小張獲得1分;小王得1分的概率,再判斷游戲的公平性.

解:(1)用樹狀圖表示所有可能出現(xiàn)的情況如下:

P3枚硬幣同時正面朝上);

2)公平,所有面值出現(xiàn)的情況如圖所示:

P(小張獲得1分),P(小王得1分),

P(小張獲得1分)P(小王得1分),

因此對于他們來說是公平的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在淮河的右岸邊有一高樓,左岸邊有一坡度的山坡,點與點在同一水平面上,在同一平面內(nèi).某數(shù)學(xué)興趣小組為了測量樓的高度,在坡底處測得樓頂的仰角為,然后沿坡面上行了米到達(dá)點處,此時在處測得樓頂的仰角為,求樓的高度.(結(jié)果保留整數(shù))(參考數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx3a0)與直線ykx+ck0)相交于A(﹣1,0)、B2,﹣3)兩點,且拋物線與y軸交于點C

1)求拋物線的解析式;

2)求出C、D兩點的坐標(biāo)

3)在第四象限拋物線上有一點P,若△PCD是以CD為底邊的等腰三角形,求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了備戰(zhàn)初三物理、化學(xué)實驗操作考試,某校對初三學(xué)生進(jìn)行了模擬訓(xùn)練,物理、化學(xué)各有3個不同的操作實驗題目,物理題目用序號①、②、③表示,化學(xué)題目用字母a、b、c表示,測試時每名學(xué)生每科只操作一個實驗,實驗的題目由學(xué)生抽簽確定,第一次抽簽確定物理實驗題目,第二次抽簽確定化學(xué)實驗題目.

1)小李同學(xué)抽到物理實驗題目①這是一個  事件(填必然、不可能隨機(jī)).

2)小張同學(xué)對物理的①、②和化學(xué)的c號實驗準(zhǔn)備得較好,請用畫樹形圖(或列表)的方法,求他同時抽到兩科都準(zhǔn)備得較好的實驗題目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A90°,AC3AB4,動點P從點A出發(fā),沿AB方向以每秒2個單位長度的速度向終點B運動,點Q為線段AP的中點,過點P向上作PMAB,且PM3AQ,以PQ、PM為邊作矩形PQNM.設(shè)點P的運動時間為t秒.

1)線段MP的長為   (用含t的代數(shù)式表示).

2)當(dāng)線段MN與邊BC有公共點時,求t的取值范圍.

3)當(dāng)點NABC內(nèi)部時,設(shè)矩形PQNMABC重疊部分圖形的面積為S,求St之間的函數(shù)關(guān)系式.

4)當(dāng)點MABC任意兩邊所在直線距離相等時,直接寫出此時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx3x軸交于A,B兩點,與y軸交于點C,且OBOC3OA,求拋物線的解析式( 。

A.yx22x3B.yx22x+3C.yx22x4D.yx22x5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O為原點,O的半徑為1,點A的坐標(biāo)為(2,0),動點BO上,以AB為邊作等邊△ABC(順時針),則線段OC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2在第一象限內(nèi)經(jīng)過的整數(shù)點(橫坐標(biāo),縱坐標(biāo)都為整數(shù)的點)依次為A1,A2,A3,…An,…,將拋物線yx2沿直線Lyx向上平移,得一系列拋物線,且滿足下列條件:

①拋物線的頂點M1M2,M3,…Mn,…都在直線Lyx上;

②拋物線依次經(jīng)過點A1,A2A3An,….

M2016頂點的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB45°.點D(與點B、C不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF

1)如果ABAC.如圖①,且點D在線段BC上運動.試判斷線段CFBD之間的位置關(guān)系,并證明你的結(jié)論.

2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結(jié)論是否成立,為什么?

3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設(shè)AC4BC3,CDx,求線段CP的長.(用含x的式子表示)

查看答案和解析>>

同步練習(xí)冊答案