【題目】關(guān)于整式(x﹣2)(x+n)運(yùn)算結(jié)果中,一次項(xiàng)系數(shù)為2,則n=

【答案】4
【解析】解:原式=x2+(n﹣2)x﹣2n,
由結(jié)果中一次項(xiàng)系數(shù)為2,得到n﹣2=2,
解得:n=4.
所以答案是:4
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解單項(xiàng)式乘單項(xiàng)式的相關(guān)知識,掌握單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式,以及對多項(xiàng)式乘多項(xiàng)式的理解,了解多項(xiàng)式與多項(xiàng)式相乘,先用一個多項(xiàng)式的每一項(xiàng)乘另外一個多項(xiàng)式的每一項(xiàng),再把所得的積相加.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好治理河流水質(zhì),保護(hù)環(huán)境,某市治污公司決定購買10臺污水處理設(shè)備,現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價格,月處理污水量如表:

A型

B型

價格(萬元/臺)

a

b

處理污水量(噸/月)

220

180

經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多3萬元,購買2臺A型設(shè)備比購買3臺B型設(shè)備少3萬元.
(1)求a,b的值;
(2)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過100萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)問的條件下,若每月要求處理的污水量不低于1880噸,為了節(jié)約資金,請你為治污公司設(shè)計(jì)一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,若AE⊥BC,∠ADC=65°,則∠ABC的度數(shù)為( )

A.30°
B.40°
C.50°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校買來鋼筆若干枝,可以平均分給(x﹣1)名同學(xué),也可分給(x﹣2)名同學(xué)(x為正整數(shù)).用代數(shù)式表示鋼筆的數(shù)量不可能的是( 。
A.x2+3x+2
B.3x1)(x2
C.x23x+2
D.x33x2+2x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).
(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,□ABCD的對角線相交于點(diǎn)O,將線段OD繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)D的對應(yīng)點(diǎn)落在BC延長線上的點(diǎn)E處,OECDH,連接DE

(1)求證:DEBC;

(2)若OECD,求證:2CE·OECD·DE

(3)若OECD,BC=3,CE=1,求線段AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=-2x+100.(利潤=售價-制造成本)

(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;

(2)當(dāng)銷售單價為多少元時,廠商每月能獲得350萬元的利潤?當(dāng)銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?

(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算a(1+a)﹣a(1﹣a)的結(jié)果為(
A.2a
B.2a2
C.0
D.﹣2a+2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級所有學(xué)生參加2011年初中畢業(yè)英語口語、聽力自動化考試,我們從中隨機(jī)抽取了部分學(xué)生的考試成績,將他們的成績進(jìn)行統(tǒng)計(jì)后分為A、B、C、D四等,并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請你結(jié)合圖中所給信息解答下列問題:

(說明:A級:25分~30分;B級:20分~24分;C級:15分~19分;D級:15分以下)
(1)請把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中D級所占的百分比是;
(3)扇形統(tǒng)計(jì)圖中A級所在的扇形的圓心角度數(shù)是;
(4)若該校九年級有850名學(xué)生,請你估計(jì)全年級A級和B級的學(xué)生人數(shù)共約為人.

查看答案和解析>>

同步練習(xí)冊答案