已知如圖,△ABC和△DCE都是等邊三角形,若△ABC的邊長(zhǎng)為1,則△BAE的面積是,四邊形ABCD和四邊形BEFG都是正方形,若正方形ABCD的邊長(zhǎng)為4,則△FAC的面積是8,……,如果兩個(gè)正多邊形ABCDE…和BPKGY…是正n(n≥3)邊形,正多邊形ABCDE …的邊長(zhǎng)是2a,則△KCA的面積是 .(結(jié)果用含有a、n的代數(shù)式表示)
【解析】
試題分析:正多邊形ABCDE…中,過(guò)點(diǎn)B作BN⊥AC于點(diǎn)N,由銳角三角函數(shù)的定義可求出BN及AC的長(zhǎng),利用三角形的面積公式即可得出結(jié)論.
正多邊形ABCDE…中,過(guò)點(diǎn)B作BN⊥AC于點(diǎn)N,
∵多邊形是正多邊形,BN⊥AC,
∴∠NBC,AC=2NC=2AN,
∵BC=2a,
考點(diǎn):正多邊形和圓
點(diǎn)評(píng):解答此題的關(guān)鍵是根據(jù)題意作出輔助線,構(gòu)造出同底等高的三角形,再根據(jù)三角形的面積公式求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| ||
4 |
| ||
4 |
360° |
n |
90°(n-2) |
n |
90°(n-2) |
n |
360° |
n |
90°(n-2) |
n |
90°(n-2) |
n |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013屆湖北省黃石市第九中學(xué)九年級(jí)下學(xué)期開(kāi)學(xué)聯(lián)考數(shù)學(xué)試卷(帶解析) 題型:填空題
已知如圖,△ABC和△DCE都是等邊三角形,若△ABC的邊長(zhǎng)為1,則△BAE的面積是,四邊形ABCD和四邊形BEFG都是正方形,若正方形ABCD的邊長(zhǎng)為4,則△FAC的面積是8,……,如果兩個(gè)正多邊形ABCDE…和BPKGY…是正n(n≥3)邊形,正多邊形ABCDE …的邊長(zhǎng)是2a,則△KCA的面積是 .(結(jié)果用含有a、n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市通州區(qū)九年級(jí)中考一模數(shù)學(xué)卷(解析版) 題型:填空題
已知如圖,△ABC和△DCE都是等邊三角形,若△ABC的邊長(zhǎng)為1,則△BAE的面積是 .
四邊形ABCD和四邊形BEFG都是正方形,若正方形ABCD的邊長(zhǎng)為4,則△FAC的面積是 .
……
如果兩個(gè)正多邊形ABCDE…和BPKGY…是正n(n≥3)邊形,正多邊形ABCDE …的邊長(zhǎng)是2a,則△KCA的面積是 .(結(jié)果用含有a、n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012屆北京市通州區(qū)九年級(jí)中考一模數(shù)學(xué)卷(帶解析) 題型:填空題
已知如圖,△ABC和△DCE都是等邊三角形,若△ABC的邊長(zhǎng)為1,則△BAE的面積是 .
四邊形ABCD和四邊形BEFG都是正方形,若正方形ABCD的邊長(zhǎng)為4,則△FAC的面積是 .
……
如果兩個(gè)正多邊形ABCDE…和BPKGY…是正n(n≥3)邊形,正多邊形ABCDE …的邊長(zhǎng)是2a,則△KCA的面積是 .(結(jié)果用含有a、n的代數(shù)式表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com