【題目】如圖,矩形紙片ABCD中,AB=6,AD=10,點P是邊BC上的動點,現(xiàn)將紙片折疊,使點A與點P重合,折痕與矩形邊的交點分別為E、F,要使折痕始終與邊AB、AD有交點,則BP的取值范圍是 .
【答案】2≤x≤6
【解析】解:如圖:①當F、D重合時,BP的值最小;
根據(jù)折疊的性質知:AF=PF=10;
在Rt△PFC中,PF=10,F(xiàn)C=6,則PC=8;
∴BP=xmin=10﹣8=2;②當E、B重合時,BP的值最大;根據(jù)折疊的性質即可得到AB=BP=6,即BP的最大值為6.
故答案為:2≤x≤6.
利用極端原理求解:①BP最小時,F(xiàn)、D重合,由折疊的性質知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的長,進而可求得BP的值,即BP的最小值;②BP最大時,E、B重合,根據(jù)折疊的性質即可得到AB=BP=34,即BP的最大值為4;根據(jù)上述兩種情況即可得到BP的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧分別交AB,AC于點M和N,再分別以點M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法:①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的垂直平分線上;④S△DAC:S△ABC=1:3.其中正確的是__________________.(填所有正確說法的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=100°,AC=AE,BC=BD,則∠DCE的度數(shù)為
A. 20° B. 25° C. 30° D. 40°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠AOC:∠BOC=2:1,將直角三角板的直角頂點放在點O處,一邊ON在射線OA上,另一邊OM在直線AB的下方.
(1)在圖1中,∠AOC= °,∠MOC= °;
(2)將圖1中的三角板按圖2的位置放置,使得OM在射線QA上,求∠CON的度數(shù);
(3)將上述直角三角板按圖3的位置放置,OM在∠BOC的內部,說明∠BON﹣∠COM的值固定不變.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC在平面直角坐標系中的位置如圖1所示,A點坐標為(﹣4,0),B點坐標為(6,0),點D為AC的中點,點E是拋物線在第二象限圖象上一動點,經(jīng)過點A,B,C三點的拋物線的解析式為y=ax2+bx+8.
(1)求拋物線的解析式;
(2)如圖1,連接DE,把點A沿直線DE翻折,點A的對稱點為點G,當點G恰好落在拋物線的對稱軸上時,求G點的坐標;
(3)圖2中,點E運動時,當點G恰好落在BC上時,求E點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分線分別交AB,AC于點D和點E.若CE=2,則AB的長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長均為個單位的正方形網(wǎng)格圖中,建立了直角坐標系,按要求解答下列問題:
(1)寫出三個頂點的坐標;
(2)畫出向右平移個單位后的圖形;
(3)求在平移過程中掃過的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com