精英家教網 > 初中數學 > 題目詳情
數學家們通過長期的研究,得到了關于“等周問題”的重要結論:在周長相同的所有封閉平面曲線中,以圓所圍成的面積最大.
“等周問題”雖然較為繁雜,但其根本思想基于下面2個事實:
事實1:等周長n邊形的面積,當圖形為正n邊形時,其面積最大;
事實2:等周長n邊形的面積,當邊數n越大時,其面積也越大.
為了理解這些事實的合理性,曙光數學小組走出校門展開了下列課題研究.請你幫助他們解決其中的一些問題.
現有長度為100m的籬笆(可彎曲圍成一個區(qū)域).
(1)如果用籬笆圍成一個長方形雞場,怎樣圍才能使雞場的面積最大?為什么?
(2)如果用籬笆圍成一個正五邊形雞場,那么與(1)中的正方形雞場比較,哪個面積更大?請在事實1的基礎上證明事實2:“等周長n邊形的面積,當邊數n越大時,其面積也越大.”
(3)利用事實1和事實2,請對“等周問題”的重要結論作出較為合理的解釋.
(4)愛動腦筋的小明提出一個問題:如果借用一條充分長的直墻,將籬笆圍成一個四邊形雞場,為了使雞場的面積盡量大,所圍成的長方形雞場的長是寬的2倍(如圖).你覺得他講的是否有道理?你有沒有更好的方法,使圍成的四邊形雞場的面積更大?如果有,請說明你的方法.
(1)設長為xm,寬為(50-x)m,則S=x•(50-x)=-(x-25)2+625,所以當每條邊長為25m時,才能使長方形雞場的面積最大;

(2)正五邊形雞場面積更大;
對于事實2,我們給出下述證明:

如圖1、2,設正n邊形A1A2An與正(n+1)邊形A1A2An+1的周長相等,下面我們證明SA1A2AnSA1A2An+1.在邊A1A2上任取一點(異于點A1、A2),這樣我們可以把A1A2An看成是(n+1)邊形A1CA2An,但它顯然不是正(n+1)邊形,它的周長與正(n+1)邊形A1A2An+1的周長相等,根據事實1,SA1CA2AnSA1A2An+1,即SA1A2AnSA1A2An+1
所以,等周長n邊形的面積,當邊數n越大時,其面積也越大;

(3)在周長相同的情況下,曲線圍成正多邊形面積較大;
正多邊形的邊數越大,圖形越接近于圓,面積也越大,當邊數無限增大時,正多邊形無限地接近于圓,面積越來越接近于一個固定的值,這個值就是所圍成的圓的面積;

(4)他講的有道理.
設寬為xm,長為(100-2x)m,
則S=x•(100-2x)=-2(x-25)2+1250,
所以當長為寬的2倍時,才能使長方形雞場的面積最大.
有更好的方法:

如圖4,如果將圖1中的點A、D分別向外移動.
那么ABCD仍然是四邊形,而將四邊形沿墻反射過來,這樣就得到一個新的封閉六邊形BCDC′B′A,它的周長等于原籬笆長度的兩倍.
所以當六邊形BCDC′B′A為正六邊形,即AB=BC=CD,且∠BAD=∠CDA=60°,∠ABC=∠DCB=120°時,六邊形BCDC′B′A的面積最大.
因而其一半即四邊形ABCD的面積也最大.由于周長相等,
因此圖4中正六邊形BCDC′B′A的面積大于圖3中正方形BCC′B′的面積,
所以圖4中四邊形ABCD的面積大于圖3中四邊形ABCD的面積.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖1,Rt△ABC中,斜邊AB在x軸上,點C在y軸上,且OC=2,OA:OB=1:4,拋物線y=ax2+bx+c經過A、B、C三點.
(1)求此拋物線的解析式;
(2)若直線y=x+b與Rt△ABC相交,所截得的三角形面積是原Rt△ABC面積的
3
10
,求b的值;
(3)將△OAC繞原點O逆時針旋轉90°后得到△OEF,如圖2,再將△OEF繞平面內某點旋轉180°后得△MNQ(點M、N、Q分別與點E、F、O對應),使點M,N在拋物線上,求點M,N的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于A(1,0)、B(4,0)兩點,與y軸交于C(0,2),連接AC、BC.
(1)求拋物線解析式;
(2)BC的垂直平分線交拋物線于D、E兩點,求直線DE的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=
1
2
x2-mx+2m-
7
2

(1)試說明:無論m為何實數,該拋物線與x軸總有兩個不同的交點.
(2)如圖,當拋物線的對稱軸為直線x=3時,拋物線的頂點為點C,直線y=x-1與拋物線交于A、B兩點,并與它的對稱軸交于點D.
①拋物線上是否存在一點P使得四邊形ACPD是正方形?若存在,求出點P的坐標;若不存在,說明理由;
②平移直線CD,交直線AB于點M,交拋物線于點N,通過怎樣的平移能使得以C、D、M、N為頂點的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線與y軸交于點A(0,4),與x軸交于B、C兩點.其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
(1)求拋物線的解析式;
(2)直線AC上是否存在點D,使△BCD為直角三角形.若存在,求所有D點坐標;反之說理;
(3)點P為x軸上方的拋物線上的一個動點(A點除外),連PA、PC,若設△PAC的面積為S,P點橫坐標為t,則S在何范圍內時,相應的點P有且只有1個.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=ax2-5ax+4經過△ABC的三個頂點,已知BCx軸,點A在x軸上,點C在y軸上,且AC=BC.
(1)求拋物線的對稱軸;
(2)寫出A,B,C三點的坐標并求拋物線的解析式;
(3)探究:若點P是拋物線對稱軸上且在x軸下方的動點,是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點P坐標;不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,點C是半圓O的半徑OB上的動點,作PC⊥AB于C.點D是半圓上位于PC左側的點,連接BD交線段PC于E,且PD=PE.
(1)求證:PD是⊙O的切線;
(2)若⊙O的半徑為4
3
,PC=8
3
,設OC=x,PD2=y.
①求y關于x的函數關系式;
②當x=
3
時,求tanB的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,以A為頂點的拋物線與y軸交于點B、已知A、B兩點的坐標分別為(3,0)、(0,4).
(1)求拋物線的解析式;
(2)設M(m,n)是拋物線上的一點(m、n為正整數),且它位于對稱軸的右側.若以M、B、O、A為頂點的四邊形四條邊的長度是四個連續(xù)的正整數,求點M的坐標;
(3)在(2)的條件下,試問:對于拋物線對稱軸上的任意一點P,PA2+PB2+PM2>28是否總成立?請說明理由.

查看答案和解析>>

同步練習冊答案