【題目】如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作EF⊥AB于點F,交AC的延長線于點E.
(1)判斷EF與⊙O的位置關(guān)系,并說明理由;
(2)若AF=6,sinE=,求BF的長.
【答案】(1)見解析;(2).
【解析】
(1)EF與⊙O相切,先根據(jù)等腰三角形三線合一得:BD是高線也是中線,由此得OD是△ABC的中位線,所以OD∥AB,所以OD⊥EF,則EF與⊙O相切;
(2)設(shè)圓的半徑為x,根據(jù)△EOD∽△EAF,列比例式求x的值,則直徑AC=,則AB=,由此可得結(jié)論.
解:(1)EF與⊙O相切,理由是:
連接OD、AD,
∵AC是⊙O的直徑,
∴∠ADC=90°,
∵AB=AC,
∴BD=DC,
∵OA=OC,
∴OD為△ABC的中位線,
∴OD∥AB,
∵EF⊥AB,
∴OD⊥EF,
∴EF與⊙O相切;
(2)∵OD∥AB,
∴△EOD∽△EAF,
∴,
Rt△AEF中,sinE==,
∵AF=6,
∴=,
∴AE=10,
設(shè)OD=x,則OA=OD=x,
∴,
x=,
∴OA=,
∴AC=2OA=,
∴AB=AC=,
∴BF=AB﹣AF=﹣6=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中是拋物線拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測P處,仰角分別為α、β,且tanα=,tanβ=,以O為原點,OA所在直線為x軸建立直角坐標(biāo)系.
(1)求點P的坐標(biāo);
(2)水面上升1m,水面寬多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了對學(xué)生進行革命傳統(tǒng)教育,紅旗中學(xué)開展了“清明節(jié)祭掃”活動.全校學(xué)生從學(xué)校同時出發(fā),步行米到達烈士紀(jì)念館.學(xué)校要求九班提前到達目的地,做好活動的準(zhǔn)備工作.行走過程中,九(1)班步行的平均速度是其他班的倍,結(jié)果比其他班提前分鐘到達.分別求九(1)班、其他班步行的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,△ABC的位置如圖所示.
(1)頂點A關(guān)于x軸對稱的點A′的坐標(biāo)(____________),頂點B的坐標(biāo)(____________),頂點C關(guān)于原點對稱的點C′的坐標(biāo)(____________).
(2)△ABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣4ax+3a.
(Ⅰ)求該二次函數(shù)的對稱軸;
(Ⅱ)若該二次函數(shù)的圖象開口向下,當(dāng)1≤x≤4時,y的最大值是2,且當(dāng)1≤x≤4時,函數(shù)圖象的最高點為點P,最低點為點Q,求△OPQ的面積;
(Ⅲ)若對于該拋物線上的兩點P(x1,y1),Q(x2,y2),當(dāng)t≤x1≤t+1,x2≥5時,均滿足y1≥y2,請結(jié)合圖象,直接寫出t的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形紙片ABC中,AB=AC=10,BC=12,將此等腰三角形紙片沿底邊BC上的高AD剪成兩個全等的三角形,用這兩個三角形拼成一個平行四邊形,則所拼出的所有平行四邊形中最長的對角線的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點A(,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達式;
(2)求∠ACB的度數(shù);
(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名射擊運動員進行射擊比賽,兩人在相同條件下,各射擊10次,射擊的成績?nèi)鐖D所示.根據(jù)統(tǒng)計圖信息,整理分析數(shù)據(jù)如下:
平均成績(環(huán)) | 中位數(shù)(環(huán)) | 眾數(shù)(環(huán)) | 方差 | |
甲 | 8 | b | 8 | s2 |
乙 | a | 7 | c | 0.6 |
(1)補充表格中a,b,c的值,并求甲的方差s2;
(2)運用表中的四個統(tǒng)計量,簡要分析這兩名運動員的射擊成績,若選派其中一名參賽,你認(rèn)為應(yīng)選哪名運動員?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com