精英家教網 > 初中數學 > 題目詳情
如圖,四邊形OABC為直角梯形,OA=4,BC=3,OC=4. 點M從O 出發(fā)向A運動;點N從B同時出發(fā),向C運動,速度均為每秒1個單位長度.其中一個動點到達終點時,另一個動點也隨之停止運動.過點N作NP垂直x軸于點P,連接AC交NP于Q,連接MQ、OQ,設運動時間為t秒.
(1)用含t的代數式表示PQ的長.
(2)是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標,若不存在,說明理由.
(3)設E、F分別是OQ、PQ的中點,求整個運動過程中,線段EF所掃過的面積.

【答案】分析:(1)先判定△OAC是等腰直角三角形,再根據等腰直角三角形的性質求出∠OAC=45°,然后根據兩直線平行,內錯角相等可得∠ACB=45°,再表示出CN,根據等腰直角三角形的性質可得NQ=CN,然后根據PQ=NP-CN代入整理即可得解;
(2)分①AQ=AM時,根據等腰三角形三線合一可得AP=AM,然后列式求解即可,②AM=QM時,點M、P重合,然后列出方程求解即可;
(3)分開始運動時求出AP、OP的長,然后根據三角形的中位線平行于第三邊并且等于第三邊的一半求出EF的長,再求出PF的長,運動停止時點N、Q與點C重合,點E為OC的中點E′,然后求出此時點E′到EF的距離,再利用三角形的面積公式列式計算即可得解.
解答:解:(1)∵OA=4,OC=4,
∴△OAC是等腰直角三角形,
∴∠OAC=45°,
∵OA∥BC,
∴∠ACB=∠OAC=45°,
∴△CNQ是等腰直角三角形,
∴NQ=CN=3-t,
∴PQ=NP-CN=4-(3-t)=t+1;

(2)①AQ=AM時,AM=4-t,
根據等腰三角形三線合一的性質,AP=AM=(4-t),
∵∠OAC=45°,NP⊥OA于P,
∴AP=PQ,
(4-t)=t+1,
解得t=,
此時OM=,
所以,點M的坐標為(,0),
②AM=QM時,點M、P重合,
∴AM=AP=PQ,
∴4-t=t+1,
解得t=,
此時OM=
所以,點M的坐標為(,0),
綜上所述,存在點M(,0)或(,0),使得△AQM為直角三角形;

(3)如圖,開始運動時,OP=BC=3,
AP=OA-BC=4-3=1,
∴PQ=AP=1,
∵E、F分別是OQ、PQ的中點,
∴PF=PQ=×1=,
EF=OP=×3=,
運動停止時,點N、Q與點C重合,
此時點E、F重合,為OC的中點E′,
點E′到EF的距離為OC-PF=×4-=2-=,
∴線段EF所掃過的面積=××=
點評:本題考查了相似形綜合題,主要利用了等腰直角三角形的判定與性質,等腰三角形三線合一的性質,三角形的中位線平行于第三邊并且等于第三邊的一半,(2)注意要分情況討論,(3)確定出EF所掃過的面積是三角形的面積是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,四邊形OABC為直角梯形,BC∥OA,∠O=90°,OA=4,BC=3,OC=4.點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達終點時,另一個動點也隨之停止運精英家教網動.過點N作NP⊥OA于點P,連接AC交NP于Q,連接MQ. 
(1)點
 
(填M或N)能到達終點;
(2)求△AQM的面積S與運動時間t的函數關系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形OABC是一張放在平面直角坐標系中的正方形紙片.點O與坐標原點重合,點A在x軸上,點C在y軸上,OC=4,點E為BC的中點,點N的坐標為(3,0),過點N且平行于y軸的直線MN與EB交于點M.現將紙片折疊,使頂點C落精英家教網在MN上,并與MN上的點G重合,折痕為EF,點F為折痕與y軸的交點.
(1)求點G的坐標;
(2)求折痕EF所在直線的解析式;
(3)設點P為直線EF上的點,是否存在這樣的點P,使得以P,F,G為頂點的三角形為等腰三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形OABC為正方形,點A在x軸上,點C在y軸上,點B(8,8),點P在邊OC上,點M在邊AB上.把四邊形OAMP沿PM對折,PM為折痕,使點O落在BC邊上的點Q處.動點E從點O出發(fā),沿OA邊以每秒1個單位長度的速度向終點A運動,運動時間為t,同時動點F從點O出發(fā),沿OC邊以相同的速度向終點C運動,當點E到達點A時,E、F同時停止運動.
(1)若點Q為線段BC邊中點,直接寫出點P、點M的坐標;
(2)在(1)的條件下,設△OEF與四邊形OAMP重疊面積為S,求S與t的函數關系式;
(3)在(1)的條件下,在正方形OABC邊上,是否存在點H,使△PMH為等腰三角形,若存在,求出點H的坐標,若不存在,請說明理由;
(4)若點Q為線段BC上任一點(不與點B、C重合),△BNQ的周長是否發(fā)生變化,若不發(fā)生變化,求出其值,若發(fā)生變化,請說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•呼倫貝爾)如圖,四邊形OABC是邊長為2的正方形,反比例函數y=
k
x
的圖象過點B,則k的值為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

附加題:如圖,四邊形OABC為直角梯形,已知AB∥OC,BC⊥OC,A點坐標為(3,4),AB=6,若動點P沿著O→A→B→C的方向運動(不包括O點和C點),P點運動路程為S,下列語句中正確的個數精英家教網是( 。
(1)直線OA的函數解析式為y=
4
3
x
;
(2)梯形OABC的周長為24;
(3)若點P在線段AB上時,P點的坐標為(S-5,4)
(4)若點P在線段BC上時,P點的坐標為(9,15-S)
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習冊答案