【題目】夾在兩條平行線間的正方形ABCD、等邊三角形DEF如圖所示,頂點(diǎn)A、F分別在兩條平行線上.若A、D、F在一條直線上,則∠1與∠2的數(shù)量關(guān)系是( 。
A. ∠1+∠2=60° B. ∠2﹣∠1=30° C. ∠1=2∠2. D. ∠1+2∠2=90°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 1,在平面直角坐標(biāo)系中,圖形 W在坐標(biāo)軸上的投影長(zhǎng)度定義如下:設(shè)點(diǎn) P( , ) ,Q( , ) 是圖形 W 上的任意兩點(diǎn),若的最大值為 m ,則
圖形 W 在 x 軸上的投影長(zhǎng)度為 lx m ;若的最大值為 n ,則圖形 W 在 y 軸上的
投影長(zhǎng)度為 ly n .如圖 1,圖形 W 在 x 軸上的投影長(zhǎng)度為 lx 4 ;在 y 軸上的 投影長(zhǎng)度為 ly 3 .
(1)已知點(diǎn) A(1, 2) , B(2, 3) , C (3,1) ,如圖 2 所示,若圖形 W 為四邊形 OABC ,
則 lx , ly ;
(2)已知點(diǎn) C (, 0) ,點(diǎn) D 在直線 y x 1(x 0) 上,若圖形 W 為 OCD ,當(dāng) lx ly
時(shí),求點(diǎn) D 的坐標(biāo);
(3 )若圖形 W 為函數(shù) y x 2(a x b) 的圖象,其中 (0 a b) ,當(dāng)該圖形滿足
lx ly 1時(shí),請(qǐng)直接寫出 a 的取值范圍.
圖 1 圖 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程-(k+2)x+2k=0.
(1)試說(shuō)明無(wú)論k取何值時(shí),這個(gè)方程一定有實(shí)數(shù)根;
(2)已知等腰的一邊a=1,若另兩邊b、c恰好是這個(gè)方程的兩個(gè)根,求的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AM,CN分別是∠BAD和∠BCD的平分線,添加一個(gè)條件,仍無(wú)法判斷四邊形AMCN為菱形的是( )
A.AM=AN B.MN⊥AC
C.MN是∠AMC的平分線 D.∠BAD=120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.在不等邊△ABC中,PM⊥AB,垂足為M,PN⊥AC,垂足為N,且PM=PN,Q在AC上,PQ=QA,下列結(jié)論.①AN=AM,②QP∥AM,③△BMP≌△QNP,其中正確的是( )
A.①②③B.①②C.②③D.①
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知□ABCD,延長(zhǎng)AB到E使BE=AB,連接BD,ED,EC,若ED=AD.
(1)求證:四邊形BECD是矩形;
(2)連接AC,若AD=4,CD= 2,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩個(gè)正方形邊長(zhǎng)分別為a、b,且滿足a b 10, ab 12,圖中陰影部分的面積為( )
A.100B.32C.144D.36
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖8中圖①,兩個(gè)等邊△ABD,△CBD的邊長(zhǎng)均為1,將△ABD沿AC方向向
右平移到△A′B′D′的位置得到圖②,則陰影部分的周長(zhǎng)為_________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com