【題目】如圖,點(diǎn)A在拋物線yx2﹣2x+2上運(yùn)動(dòng),過(guò)點(diǎn)AACx軸于點(diǎn)C,以AC為對(duì)角線作矩形ABCD,連結(jié)BD,則BD的最小值為( 。

A. B. 1 C. D. 2

【答案】B

【解析】

先利用配方法得到拋物線的頂點(diǎn)坐標(biāo)為(1,1),再根據(jù)矩形的性質(zhì)得BD=AC,由于AC的長(zhǎng)等于點(diǎn)A的縱坐標(biāo),所以當(dāng)點(diǎn)A在拋物線的頂點(diǎn)時(shí),點(diǎn)Ax軸的距離最小,最小值為1,從而得到BD的最小值.

解:∵y=x2﹣2x+2=(x﹣1)2+1,

∴拋物線的頂點(diǎn)坐標(biāo)為(1,1),

∵四邊形ABCD為矩形,

BD=AC,

ACx軸,

AC的長(zhǎng)等于點(diǎn)A的縱坐標(biāo),

當(dāng)點(diǎn)A在拋物線的頂點(diǎn)時(shí),點(diǎn)Ax軸的距離最小,最小值為1,

∴對(duì)角線BD的最小值為1.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點(diǎn),點(diǎn)P是直線BC下方拋物線上一動(dòng)點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;

(2)是否存在點(diǎn)P,使POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)動(dòng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),PBC面積最大,求出此時(shí)P點(diǎn)坐標(biāo)和PBC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說(shuō)法錯(cuò)誤的是

A. 連續(xù)拋一均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一均勻硬幣10次都可能正面朝上

C. 大量反復(fù)拋一均勻硬幣,平均100次出現(xiàn)正面朝上50

D. 通過(guò)拋一均勻硬幣確定誰(shuí)先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的三個(gè)方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一個(gè)方程有實(shí)根,則m的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MAN=30°,點(diǎn)C、B分別在射線AM、AN上,AB=6,∠ACB=30°.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿射線AN以每秒3個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng).過(guò)點(diǎn)PPQAN交射線AM于點(diǎn)Q,點(diǎn)E是線段AQ的中點(diǎn),連結(jié)PE.設(shè)△PQE與△ABC重疊部分圖形的面積為S平方單位,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(tO).

(1)求PQ的長(zhǎng)(用含t的代數(shù)式表示).

(2)當(dāng)點(diǎn)Q在邊AC上時(shí),求St之間的函數(shù)關(guān)系式.

(3)當(dāng)△PQE與△ABC重疊部分圖形是一個(gè)面積為的三角形時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖AB⊙O的切線,切點(diǎn)為B,AO⊙O于點(diǎn)C,過(guò)點(diǎn)CDC⊥OA,交AB于點(diǎn)D.

(1)求證:∠CDO∠BDO;

(2)∠A30°,⊙O的半徑為4,求陰影部分的面積(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形OABC的頂點(diǎn)A在x軸上,OA=4,OC=3,點(diǎn)D為BC邊上一點(diǎn),以AD為一邊在與點(diǎn)B的同側(cè)作正方形ADEF,連接OE。當(dāng)點(diǎn)D在邊BC上運(yùn)動(dòng)時(shí),OE的長(zhǎng)度的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+cy軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn)(點(diǎn)A在原點(diǎn)左側(cè),點(diǎn)B在原點(diǎn)右側(cè)),且∠ACB=90°,tanBAC=

①求拋物線的解析式;

②若拋物線頂點(diǎn)為P,求四邊形APCB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案