【題目】如圖:007漁船在南海海面上沿正東方向勻速航行,在A點(diǎn)觀測(cè)到漁船C在北偏東60°方向的我國(guó)某傳統(tǒng)漁場(chǎng)捕魚作業(yè).若007漁船航向不變,航行半小時(shí)后到達(dá)B點(diǎn),觀測(cè)到漁船C在東北方向上.問(wèn):007漁船再按原航向航行多長(zhǎng)時(shí)間,離漁船C的距離最近?
【答案】漁政007船再按原航向航行小時(shí)后,離漁船C的距離最近.
【解析】首先作CD⊥AB,交AB的延長(zhǎng)線于D,則當(dāng)漁政310船航行到D處時(shí),離漁政船C的距離最近,進(jìn)而表示出AB的長(zhǎng),再利用速度不變得出等式求出即可.
如圖,過(guò)點(diǎn)C作CD⊥AB,交AB的延長(zhǎng)線于D,設(shè)CD長(zhǎng)為x,
在Rt△ACD中,∵∠ACD=60°,tan∠ACD=
∴AD=
在Rt△BCD中,∵∠CBD=∠BCD=45°,∴BD=CD=x,
∴AB=AD-BD=
設(shè)漁政船從B航行到D需要t小時(shí),則
∴
∴解得:t=
答:漁政007船再按原航向航行小時(shí)后,離漁船C的距離最近.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤10),過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請(qǐng)說(shuō)明理由;
(2)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC與DE相交于點(diǎn)F,連接CD,EB.
(1)圖中還有幾對(duì)全等三角形,請(qǐng)你一一列舉;
(2)求證:CF=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小玲家在某24層樓的頂樓,對(duì)面新造了一幢28米高的圖書館,小玲在樓頂A處看圖書館樓頂B處和樓底C處的俯角分別是45°,60°.請(qǐng)問(wèn):
(1)兩樓的間距是多少米?(精確到1m)
(2)小玲家的這幢住宅樓的平均層高是多少米?(精確到0.1m)
(參考了數(shù)據(jù): ≈1.73,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,Rt△ABC中,∠ABC=90°,∠CAB的平分線交BC于點(diǎn)O,以O為圓心,OB長(zhǎng)為半徑作⊙O.
(1)求證:⊙O與AC相切.
(2)若AB=6,AC=10.
①求⊙O的半徑;
②如圖②,延長(zhǎng)AO交⊙O于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,分別交AC、AB的延長(zhǎng)線于E、F,試求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB垂直于x軸,頂點(diǎn)A在函數(shù)y1=(x>0)的圖象上,頂點(diǎn)B在函數(shù)y2=(x>0)的圖象上,∠ABO=30°,則= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD的一組對(duì)邊AD、BC的延長(zhǎng)線交于點(diǎn)E.
(1)如圖①,若∠ABC=∠ADC=90°,求證:ED·EA=EC·EB;
(2)如圖②,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面積為6,求四邊形ABCD的面積;
(3)如圖③,另一組對(duì)邊AB、DC的延長(zhǎng)線相交于點(diǎn)F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接寫出AD的長(zhǎng)(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=﹣+mx+4﹣m的圖象與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與),軸交于點(diǎn)C.拋物線的對(duì)稱軸是直線x=﹣2,D是拋物線的頂點(diǎn).
(1)求二次函數(shù)的表達(dá)式;
(2)當(dāng)﹣<x<1時(shí),請(qǐng)求出y的取值范圍;
(3)連接AD,線段OC上有一點(diǎn)E,點(diǎn)E關(guān)于直線x=﹣2的對(duì)稱點(diǎn)E'恰好在線段AD上,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com