【題目】某觀光湖風(fēng)景區(qū),一觀光輪與一巡邏艇同時從甲碼頭出發(fā)駛往乙碼頭,巡邏艇勻速往返于甲、乙兩個碼頭之間,當(dāng)觀光輪到達(dá)乙碼頭時,巡邏艇也同時到達(dá)乙碼頭.設(shè)出發(fā)x h后,觀光輪、巡邏艇離甲碼頭的距離分別為y1 km、y2 km.圖中的線段OG、折線OABCDEFG分別表示y1、y2 與x之間的函數(shù)關(guān)系.
(1)觀光輪的速度是 km/h,巡邏艇的速度是 km/h;
(2)求整個過程中觀光輪與巡邏艇的最大距離;
(3)求整個過程中觀光輪與巡邏艇相遇的最短時間間隔.
【答案】(1)16,112;(2)km;(3)最短時間間隔為h
【解析】
(1)根據(jù)圖像信息即可得出答案;
(2)整個過程中觀光輪與巡邏艇的最大距離,計算即可得出答案;
(3)由圖像可知,第二次相遇的時間與第一次相遇的時間間隔最小,分別計算出第一次相遇和第二次相遇的時間,用第二次相遇的時間減去第一次相遇的時間即可得出答案.
解:(1)觀光輪16 km/h,巡邏艇112 km/h;
故答案為:16,112
(2)最大距離:km;
(3)由題意可得:16x+112x=32×2,解得x=;
線段BC所表示的函數(shù)表達(dá)式為yBC=112(x-)=112x-64,y1=16x,
當(dāng)y1=yBC時,112x-64=16x,解得x=,
∴
答:最短時間間隔為h
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為2,為坐標(biāo)原點,和分別在軸、軸上,點是邊的中點,過點的直線交線段于點,連接,若平分,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于,點,與軸交于點,拋物線的頂點為,連接.
(1)求此拋物線的表達(dá)式;
(2)在拋物線上找一點,使得與垂直,且直線與軸交于點,求點的坐標(biāo);
(3)拋物線對稱軸上是否存在一點,使得,若存在,求出點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開設(shè)的體育選修課有籃球、足球、排球、羽毛球、乒乓球,學(xué)生可以根據(jù)自己的愛好選修其中1門.某班班主任對全班同學(xué)的選課情況進(jìn)行了調(diào)查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖(圖(1)和圖(2)):
(1)請你求出該班的總?cè)藬?shù),并補(bǔ)全條形圖(注:在所補(bǔ)小矩形上方標(biāo)出人數(shù));
(2)在該班團(tuán)支部4人中,有1人選修排球,2人選修羽毛球,1人選修乒乓球.如果該班班主任要從他們4人中任選2人作為學(xué)生會候選人,那么選出的兩人中恰好有1人選修排球、1人選修羽毛球的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC=2,∠A=30°,將△ABC繞點C順時針旋轉(zhuǎn)120°,若P為AB上一動點,旋轉(zhuǎn)后點P的對應(yīng)點為點P',則線段PP'長度的最小值是( )
A.B.2C.3D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某區(qū)九年級數(shù)學(xué)教學(xué)質(zhì)量檢測情況,進(jìn)行了抽樣調(diào)查,其過程如下,請補(bǔ)全表一、表二中的空白,并回答提出的問題.
收集數(shù)據(jù):隨機(jī)抽取甲、乙兩所學(xué)校中各自取20名學(xué)生的數(shù)學(xué)成績進(jìn)行分析
甲:91 89 77 86 71 31 97 93 72 91 81 92 85 85 95 88 88 90 44 91
乙:84 93 66 69 76 87 77 82 85 88 90 88 67 88 91 96 68 97 59 88
整理數(shù)據(jù):表一
分段 學(xué)校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 | 0 | 0 | 1 | 2 | 8 | 5 |
分析數(shù)據(jù):表二
統(tǒng)計量 學(xué)校 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 81.85 | 88 | 91 | 268.43 |
乙 | 81.95 | 86 | 115.25 |
得出結(jié)論:
(1)若甲學(xué)校有400名九年級學(xué)生,估計這次考試成績80分(包含80分)以上人數(shù)為 .
(2)可以推斷出 (填:甲或乙)學(xué)校學(xué)生的數(shù)學(xué)水平較高,理由是 (至少從兩個不同角度說明推斷的合理性).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸,軸分別交于點、;點是以為圓心,1為半徑的圓上一動點,過Q點的切線交線段AB于點P,當(dāng)線段PQ取最小值時,P點的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店在年至年期問銷售一種禮盒,年該商店川萬元購進(jìn)了這種禮盒并且全部售完.年這種禮盒的進(jìn)價比年下降了元/盒,該商店用萬元購進(jìn)了與年相同數(shù)量的禮盒也全部售完,禮盒的售價均為元/盒
(1)年這種禮盒的進(jìn)價是多少元/盒?
(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的二次函數(shù)(>0)的圖象經(jīng)過點C(0,1),且與軸交于不同的兩點A、B,點A的坐標(biāo)是(1,0).
(1)求c的值和,之間的關(guān)系式;
(2)求的取值范圍;
(3)該二次函數(shù)的圖象與直線交于C、D兩點,設(shè) A、B、C、D四點構(gòu)成的四邊形的對角線相交于點P,記△PCD的面積為S1,△PAB的面積為S2,當(dāng)0<<l時,求證:S1-S2為常數(shù),并求出該常數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com