【題目】已知 AB 為⊙O 的直徑,BCAB B,且 BC=ABD 為半圓⊙O 上的一點(diǎn),連接 BD 并延長(zhǎng)交半圓⊙O 的切線 AE E

1)如圖 1,若 CD=CB,求證:CD 是⊙O 的切線;

2)如圖 2,若 F 點(diǎn)在 OB 上,且CDDF,求的值.

【答案】1)①不可能;②見(jiàn)解析;(2

【解析】

1)連接DOCO,易證△CDO≌△CBO,即可解題;
2)連接AD,易證△ADF∽△BDC和△ADE∽△BDA,根據(jù)相似三角形對(duì)應(yīng)邊成比例的性質(zhì)即可解題.

1)連接DO,CO

∵BC⊥ABB,

∴∠ABC=90°

△CDO△CBO中,

,

∴△CDO≌△CBO,

∴∠CDO=CBO=90°,

ODCD,

CD是⊙O的切線;

2)連接AD,

AB是直徑,∴∠ADB=90°,

∴∠ADF+BDF=90°,∠DAB+DBA=90°

∵∠BDF+BDC=90°,∠CBD+DBA=90°,

∴∠ADF=BDC,∠DAB=CBD,

∵在ADFBDC中,

∴△ADF∽△BDC,

,

∵∠DAE+DAB=90°,∠E+DAE=90°,

∴∠E=DAB

∵在ADEBDA中,

∴△ADE∽△BDA,

,即,

AB=BC,

=1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE于點(diǎn)G,BG=4,則△EFC的周長(zhǎng)為( )

A. 11 B. 10 C. 9 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】機(jī)動(dòng)車行駛到斑馬線要禮讓行人等交通法規(guī)實(shí)施后,某校數(shù)學(xué)課外實(shí)踐小組就對(duì)這些交通法規(guī)的了解情況在全校隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實(shí)踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:

(1)本次共調(diào)查  名學(xué)生;扇形統(tǒng)計(jì)圖中C所對(duì)應(yīng)扇形的圓心角度數(shù)是  ;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該校共有800名學(xué)生,根據(jù)以上信息,請(qǐng)你估計(jì)全校學(xué)生中對(duì)這些交通法規(guī)非常了解的有多少名?

(4)通過(guò)此次調(diào)查,數(shù)學(xué)課外實(shí)踐小組的學(xué)生對(duì)交通法規(guī)有了更多的認(rèn)識(shí),學(xué)校準(zhǔn)備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機(jī)抽取兩名學(xué)生參加市區(qū)交通法規(guī)競(jìng)賽,請(qǐng)用列表或畫樹狀圖的方法求甲和乙兩名學(xué)生同時(shí)被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,規(guī)定把一個(gè)三角形先沿著x軸翻折,再向右平移2個(gè)單位稱為1次變換.如圖,已知等邊三角形ABC的頂點(diǎn)BC的坐標(biāo)分別是(﹣1,﹣1)、(﹣3,﹣1),ABC經(jīng)過(guò)連續(xù)9次這樣的變換得到ABC′,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn) A 在函數(shù)y1=-x0)的圖象上,點(diǎn) B 在直線 y2=kx+1+kk 為常數(shù),且 k≥0)上.若 AB 兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn) A,B 為函數(shù) y1,y2 圖象上的一對(duì)友好點(diǎn).請(qǐng)問(wèn)這兩個(gè)函數(shù)圖象上的友好點(diǎn)對(duì)數(shù)的情況為(

A.1對(duì)或2對(duì)B.只有1對(duì)

C.只有2對(duì)D.2對(duì)或3對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:

身高情況分組表(單位:cm)

組別

身高

A

x<155

B

155≤x<160

C

160≤x<165

D

165≤x<170

E

x≥170

根據(jù)圖表提供的信息,回答下列問(wèn)題:

(1)樣本中,男生的身高眾數(shù)在   組,中位數(shù)在   組;

(2)樣本中,女生身高在E組的人數(shù)有   人;

(3)已知該校共有男生400人,女生380人,請(qǐng)估計(jì)身高在160≤x<170之間的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為慶祝改革開放40周年,深圳舉辦了燈光秀,某數(shù)學(xué)興趣小組為測(cè)量“平安金融中心”AB的高度,他們?cè)诘孛?/span>C處測(cè)得另一幢大廈DE的頂部E處的仰角∠ECD=32°.登上大廈DE的頂部E處后,測(cè)得“平安中心”AB的頂部A處的仰角為60°,(如圖).已知C、D、B三點(diǎn)在同一水平直線上,且CD=400米,DB=200米.

1)求大廈DE的高度;

2)求平安金融中心AB的高度.

(參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,1.41,1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1個(gè)單位的方格紙中,它的頂點(diǎn)在小正方形頂點(diǎn)位置,其中點(diǎn)、、、也是小正方形的頂點(diǎn),那么與相似的是(

A.以點(diǎn)、、為頂點(diǎn)的三角形;

B.以點(diǎn)、、為頂點(diǎn)的三角形

C.以點(diǎn)、、為頂點(diǎn)的三角形

D.以點(diǎn)、為頂點(diǎn)的三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半徑為中,弦所對(duì)的圓心角分別是,,若,,則弦的長(zhǎng)等于( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案