【題目】如圖,已知DE∥BC, AB∥CD,EAB的中點,∠A=∠B.下列結(jié)論:①CD=AE;②AC=DE;③AC平分∠BCD;④O點是DE的中點;⑤AC=AB.其中正確的是( 。

A. ①②④ B. ①③⑤ C. ②③④ D. ②④⑤

【答案】A

【解析】試題分析:∵已知DE∥BC,AB∥CD,∴四邊形BCDE為平行四邊形,∴CB=DE;

∵∠A=∠B,∴AC=BC, ∴AC=DE,即可得②正確;

根據(jù)平行線等分線段性質(zhì)可得AO=CO,∵AB∥CD,∴∠A=∠DCO,

又∵∠AOE=∠COD, ∴△AOE≌△COD(ASA), ∴AE=CD,即可得①正確;

OE=OD,O點是DE的中點;即可得④正確;結(jié)論③⑤無法證明.故選A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC為等邊三角形,點D由點C出發(fā),在BC的延長線上運動,連結(jié)AD,以AD為邊作等邊三角形ADE,連結(jié)CE

(1)請寫出AC、CD、CE之間的數(shù)量關(guān)系,并證明;

(2)若AB=6cm,點D的運動速度為每秒2cm,運動時間為t秒,則t為何值時,CEAD?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰ABC中,AB=AC,A=20°,AB上一點D,且AD=BC,過點DDEBCDE=AB,連接EC,則∠DCE的度數(shù)為(

A. 80° B. 70° C. 60° D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,等邊OAB的頂點Ax軸的負半軸上,點B(a,b)在第二象限內(nèi),且a,b滿足.Py軸上的一個動點,以PA為邊作等邊PAC,直線BCx軸于點M,交y軸于點D.

(1)求點A的坐標;

(2)如圖2,當點Py軸正半軸上時,求點M的坐標;

(3)如圖3,當點Py軸負半軸上時,求出OP,CD,AD滿足的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】仔細閱讀下面的例題:

例題:已知二次三項式x2-4x+m有一個因式是x+3,求另一個因式以及m的值.

解:設(shè)另一個因式為x+n,

x2-4x+m=(x+3)(x+n),

∴x2-4x+m=x2+(n+3)x+3n,

解得,

∴另一個因式為x-7,m的值為-21.

問題:仿照以上方法解答下面的問題:

已知二次三項式2x2+3x-k有一個因式是2x-5,求另一個因式以及k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,正確的是( )

A. 平面內(nèi),沒有公共點的兩條線段平行

B. 平面內(nèi),沒有公共點的兩條射線平行

C. 沒有公共點的兩條直線互相平行

D. 互相平行的兩條直線沒有公共點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則(
A.DE=EB
B. DE=EB
C. DE=DO
D.DE=OB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校改造一個邊長為米的正方形花壇,經(jīng)規(guī)劃后,南北向要縮短米,東西向要加長米,則改造后花壇的面積是________平方米,改造后花壇的面積減少了________平方米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】LED燈具有環(huán)保節(jié)能、投射范圍大、無頻閃、使用壽命較長等特點,在日常生活中,人們更傾向于LED燈的使用,某校數(shù)學興趣小組為了解LED燈泡與普通白熾燈泡的銷售情況,進行了市場調(diào)查:某商場購進一批30瓦的LED燈泡和普通白熾燈泡進行銷售,其進價與標價如下表:

LED燈泡

普通白熾燈泡

進價(元)

45

25

標價(元)

60

30


(1)該商場購進了LED燈泡與普通白熾燈泡共300個,LED燈泡按標價進行銷售,而普通白熾燈泡打九折銷售,當銷售完這批燈泡后可以獲利3200元,求該商場購進LED燈泡與普通白熾燈泡的數(shù)量分別為多少個?
(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進兩種燈泡120個,在不打折的情況下,請問如何進貨,銷售完這批燈泡時獲利最多且不超過進貨價的30%,并求出此時這批燈泡的總利潤為多少元?

查看答案和解析>>

同步練習冊答案