【題目】如圖,在,,點(diǎn)邊上的動(dòng)點(diǎn),點(diǎn)從點(diǎn)出發(fā),沿邊向點(diǎn)運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到點(diǎn)時(shí)停止,若設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒,點(diǎn)運(yùn)動(dòng)的速度為每秒2個(gè)單位長(zhǎng)度.

(1)當(dāng)時(shí),= = ;

(2)求當(dāng)為何值時(shí),是直角三角形,說(shuō)明理由;

(3)求當(dāng)為何值時(shí),,并說(shuō)明理由.

【答案】1CD=4,AD=16;(2)當(dāng)t=3.610秒時(shí),是直角三角形,理由見(jiàn)解析;(3)當(dāng)t=7.2秒時(shí),,理由見(jiàn)解析

【解析】

1)根據(jù)CD=速度×?xí)r間列式計(jì)算即可得解,利用勾股定理列式求出AC,再根據(jù)AD=AC-CD代入數(shù)據(jù)進(jìn)行計(jì)算即可得解;
2)分①∠CDB=90°時(shí),利用△ABC的面積列式計(jì)算即可求出BD,然后利用勾股定理列式求解得到CD,再根據(jù)時(shí)間=路程÷速度計(jì)算;②∠CBD=90°時(shí),點(diǎn)D和點(diǎn)A重合,然后根據(jù)時(shí)間=路程÷速度計(jì)算即可得解;
3)過(guò)點(diǎn)BBFACF,根據(jù)等腰三角形三線合一的性質(zhì)可得CD=2CF,再由(2)的結(jié)論解答.

解:(1t=2時(shí),CD=2×2=4
∵∠ABC=90°,AB=16,BC=12,

AD=AC-CD=20-4=16;

2)①∠CDB=90°時(shí),

解得BD=9.6,

t=7.2÷2=3.6秒;
②∠CBD=90°時(shí),點(diǎn)D和點(diǎn)A重合,
t=20÷2=10秒,
綜上所述,當(dāng)t=3.610秒時(shí),是直角三角形;
3)如圖,過(guò)點(diǎn)BBFACF

由(2)①得:CF=7.2,
BD=BC,

CD=2CF=7.2×2=14.4,
t=14.4÷2=7.2,
∴當(dāng)t=7.2秒時(shí),,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=-x2+bx+c與直線y=-x的交點(diǎn)A、B的橫坐標(biāo)分別為2.點(diǎn)P是直線上方拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)PPD⊥AB于點(diǎn)D,作PE⊥x軸交AB于點(diǎn)E.

(1)直接寫(xiě)出點(diǎn)A、B的坐標(biāo);

(2)求拋物線的關(guān)系式;

(3)判斷△OBC形狀,并說(shuō)明理由;

(4)設(shè)點(diǎn)P的橫坐標(biāo)為n,線段PD的長(zhǎng)為y,求y關(guān)于n的函數(shù)關(guān)系式;

(5)定義符號(hào)min{a,b)}的含義為:當(dāng)a≥b時(shí),min{a,b}=b;當(dāng)a<b時(shí),min{a,b}=a.如min{2,0}=0,min{-3,4}=-3.直接寫(xiě)出min{-x2+bx+c,-x}的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+2x-3x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對(duì)稱(chēng)軸為直線l,點(diǎn)D(-4,n)在拋物線上.

(1)求直線CD的解析式;

(2)E為直線CD下方拋物線上的一點(diǎn),連接EC,ED,當(dāng)△ECD的面積最大時(shí),在直線l上取一點(diǎn)M,過(guò)My軸的垂線,垂足為點(diǎn)N,連接EM,BN,若EM=BN時(shí),求EM+MN+BN的值.

(3)將拋物線y=x2+2x-3沿x軸正方向平移得到新拋物線y′,y′經(jīng)過(guò)原點(diǎn)O,y′與x軸的另一個(gè)交點(diǎn)為F,設(shè)P是拋物線y′上任意一點(diǎn),點(diǎn)Q在直線l上,△PFQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,直接寫(xiě)出點(diǎn)P的坐標(biāo),若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知O的直徑AE10cm,∠B=∠EAC,則AC的長(zhǎng)為( 。

A. 5cm B. 5cm C. 5 cm D. 6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)ykx+bk≠0)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B0,2),且與正比例函數(shù)yx的圖象交于點(diǎn)Cm,3).

(1)求一次函數(shù)ykx+bk≠0)的函數(shù)關(guān)系式;

(2)AOC的面積為______;

(3)若點(diǎn)M在第二象限,MAB是以AB為直角邊的等腰直角三角形,直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn),過(guò)點(diǎn)做直線平行于軸,點(diǎn)關(guān)于直線對(duì)稱(chēng)點(diǎn)為

1)求點(diǎn)的坐標(biāo);

2)點(diǎn)在直線上,且位于軸的上方,將沿直線翻折得到,若點(diǎn)恰好落在直線上,求點(diǎn)的坐標(biāo)和直線的解析式;

3)設(shè)點(diǎn)在直線上,點(diǎn)在直線上,當(dāng)為等邊三角形時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中踏集團(tuán)銷(xiāo)售某種商品,每件進(jìn)價(jià)為10元。在銷(xiāo)售過(guò)程中發(fā)現(xiàn),平均每天的銷(xiāo)售量y(件)與銷(xiāo)售價(jià)x(元/件)(不低于進(jìn)價(jià))之間的關(guān)系可近似的看做一次函數(shù):;

(1)求中踏集團(tuán)平均每天銷(xiāo)售這種商品的利潤(rùn)w(元)與銷(xiāo)售價(jià)x之間的函數(shù)關(guān)系式;

(2)當(dāng)這種商品的銷(xiāo)售價(jià)為多少元時(shí),可以獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2013年6月,某中學(xué)結(jié)合廣西中小學(xué)閱讀素養(yǎng)評(píng)估活動(dòng),以“我最喜愛(ài)的書(shū)籍”為主題,對(duì)學(xué)生最喜愛(ài)的一種書(shū)籍類(lèi)型進(jìn)行隨機(jī)抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖1和圖2提供的信息,解答下列問(wèn)題:

(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?

(2)請(qǐng)把折線統(tǒng)計(jì)圖(圖1)補(bǔ)充完整;

(3)求出扇形統(tǒng)計(jì)圖(圖2)中,體育部分所對(duì)應(yīng)的圓心角的度數(shù);

(4)如果這所中學(xué)共有學(xué)生1800名,那么請(qǐng)你估計(jì)最喜愛(ài)科普類(lèi)書(shū)籍的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,MN是平行四邊形ABCD對(duì)角線BD上兩點(diǎn).

1)若BM=MN=DN,求證:四邊形AMCN為平行四邊形;

2)若M、N為對(duì)角線BD上的動(dòng)點(diǎn)(均可與端點(diǎn)重合),設(shè)BD=12cm,點(diǎn)M由點(diǎn)B向點(diǎn)D勻速運(yùn)動(dòng),速度為2cm/s),同時(shí)點(diǎn)N由點(diǎn)D向點(diǎn)B勻速運(yùn)動(dòng),速度為 acm/s),運(yùn)動(dòng)時(shí)間為ts).若要使四邊形AMCN為平行四邊形,求a的值及t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案