【題目】如圖,在ABC中,AD平分∠BAC,點(diǎn)EAC的垂直平分線上.

1)若AB5,BC7,求ABE的周長(zhǎng);

2)若∠B57°,∠DAE15°,求∠C的度數(shù).

【答案】1)△ABE的周長(zhǎng)=12;(2)∠C31°.

【解析】

1)根據(jù)線段垂直平分線的性質(zhì)得到AE=CE,于是得到結(jié)論;
2)設(shè)∠C=α,根據(jù)等腰三角形的性質(zhì)得到∠EAC=C=α,根據(jù)角平分線的定義得到∠BAC=2DAC=2×(15°+α),根據(jù)三角形的內(nèi)角和即可得到結(jié)論.

解:(1)∵點(diǎn)EAC的垂直平分線上,

AECE,

AE+BEBE+CEBC7,

∴△ABE的周長(zhǎng)=AB+BE+AEAB+BC12

2)設(shè)∠Cα,

AECE

∴∠EAC=∠Cα,

∵∠DAE15°,

∴∠DAC15°,

AD平分∠BAC,

∴∠BAC2DAC2×(15°),

∵∠B+C+BAC180°,

57°+α+215°)=180°,

α31°,

∴∠C31°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為調(diào)查學(xué)生的興趣愛(ài)好,抽查了部分學(xué)生,并制作了如下表格與條形統(tǒng)計(jì)圖:

頻數(shù)

頻率

體育

40

0.4

科技

25

a

藝術(shù)

b

0.15

其它

20

0.2

請(qǐng)根據(jù)上圖完成下面題目:

(1)總?cè)藬?shù)為   人,a=   ,b=   

(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖.

(3)若全校有600人,請(qǐng)你估算一下全校喜歡藝術(shù)類(lèi)學(xué)生的人數(shù)有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八年級(jí)某班級(jí)部分同學(xué)去植樹(shù),若每人平均植樹(shù)7棵,還剩9棵,若每人平均植樹(shù)9棵,則有1位同學(xué)植樹(shù)的棵數(shù)不到8棵.若設(shè)同學(xué)人數(shù)為x人,植樹(shù)的棵數(shù)為(7x+9)棵,下列各項(xiàng)能準(zhǔn)確的求出同學(xué)人數(shù)與種植的樹(shù)木的數(shù)量的是( 。

A. 7x+9≤8+9(x﹣1) B. 7x+9≥9(x﹣1)

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,點(diǎn)E在AB邊上.

(1)求證:△ACE≌△BCF;

(2)若∠BFE=60°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AO平分∠BAC,AO⊥BC,DE⊥BC,GH⊥BC,垂足分別為O、E、H,且DO∥AC,∠B=43°,則圖中角的度數(shù)為47°的角的個(gè)數(shù)是( 。

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠BDA=CDA,則不一定能使ABD≌△ACD的條件是( 。

A. BD=DC B. AB=AC C. B=C D. BAD=CAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們經(jīng)濟(jì)收入的不斷提高,汽車(chē)已越來(lái)越多地進(jìn)入到各個(gè)家庭.某大型超市為緩解停車(chē)難問(wèn)題,建筑設(shè)計(jì)師提供了樓頂停車(chē)場(chǎng)的設(shè)計(jì)示意圖.按規(guī)定,停車(chē)場(chǎng)坡道口上坡要張貼限高標(biāo)志,以便告知車(chē)輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車(chē)通過(guò)坡道口的限高DF的長(zhǎng)(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)全等的等腰直角三角形按如圖方式放置在平面直角坐標(biāo)系中,OAx軸上,已知∠COD=OAB=90°,OC=,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)B.

(1)求k的值.

(2)把△OCD沿射線OB移動(dòng),當(dāng)點(diǎn)D落在y=圖象上時(shí),求點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1、圖2分別是7×6的網(wǎng)格,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)均為1,點(diǎn)A、B在小正方形的頂點(diǎn)上.

(1)在圖1中確定點(diǎn)C(點(diǎn)C在小正方形的頂點(diǎn)上),畫(huà)出三角形ABC,使tanB=1,ABC的面積為10;

(2)在圖2中確定點(diǎn)D(點(diǎn)D在小正方形的頂點(diǎn)上),畫(huà)出三角形ABD,使ABD是以AB為斜邊的直角三角形,且AD>BD,直接寫(xiě)出∠DAB的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案