【題目】如圖,在ABC中,BC的垂直平分線交AB于點D,交BC于點E,若∠A=50°,DCB=2∠ACD,則∠B的度數(shù)為(

A.26°B.36°C.52°D.45°

【答案】C

【解析】

根據(jù)∠DCB=2∠ACD,可設(shè)∠ACD=x°,則∠DCB=2x°,再利用DE垂直平分線BC,可得DB=DC,從而得到∠DCB=DBC=2x°,最后利用△ABC的內(nèi)角和是180°列方程即可.

解:∵∠DCB=2∠ACD,設(shè)∠ACD=x°

∴∠DCB=2x°

DE垂直平分線BC

DB=DC

∴∠DCB =B=2x°

∴∠ACB=ACD+∠DCB=3x°

∵∠A+∠B+∠ACB=180°,∠A=50°

502x3x=180

解得: x=26

∴∠B=52°

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC的中線,E,F分別是ADAD延長線上的點,且DE=DF,連結(jié)BFCE.下列說法①△BDF≌△CDE;②△ABD和△ACD面積相等;③BFCE;④CE=BF.其中正確的有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】9分)如圖所示,某數(shù)學活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】老師所留的作業(yè)中有這樣一個分式的計算題:,甲、乙兩位同學完成的過程分別如下:

老師發(fā)現(xiàn)這兩位同學的解答都有錯誤.

請你從甲、乙兩位同學中,選擇一位同學的解答過程,幫助他分析錯因,并加以改正.

1)我選擇     同學的解答過程進行分析.(填“甲”或“乙”)該同學的解答從第     步開始出現(xiàn)錯誤,錯誤的原因是     ;

2)請重新寫出完成此題的正確解答過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,中點,延長于點,其滿足,上一點,且于點.下列判斷:①線段的角平分線;②上的中線;③線段的邊上的高;④.其中判斷正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,BD平分∠ABCAC于點D,BD=6,則△ABD的面積為__________ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于、B兩點,與x軸交于點C,與y軸交于點E,其中

求該一次函數(shù)和反比例函數(shù)的解析式;

若點Dx軸正半軸上一點,且,連接OB、BD,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測出了A、B間的距離:先在AB外選一點C,然后測出AC,BC的中點M,N,并測量出MN的長為12m,由此他就知道了A、B間的距離.有關(guān)他這次探究活動的描述錯誤的是( )

A. AB=24m B. MNAB

C. CMN∽△CAB D. CM:MA=1:2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學生進行問卷調(diào)查根據(jù)調(diào)在結(jié)果,把學生的安全意識分成淡薄”、“一般”、“較強”、“很強四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

這次調(diào)查一共抽取了多少名學生?

請將條形統(tǒng)計圖補充完整;

若該校有1800名學生,現(xiàn)要對安全意識為淡薄”、“一般的學生強化安全教育,根據(jù)調(diào)查結(jié)果,請你估計全校需要強化安全教育的學生人數(shù).

查看答案和解析>>

同步練習冊答案