解下列方程
①x2-5x+6=0
②5x+2=3x2.
解:①x
2-5x+6=0,
分解因式得:(x-2)(x-3)=0,
可得x-2=0或x-3=0,
解得:x
1=2,x
2=3;
②5x+2=3x
2,
整理得:3x
2-5x-2=0,
分解因式得:(3x+1)(x-2)=0,
可得3x+1=0或x-2=0,
解得:x
1=-
,x
2=2.
分析:①將方程左邊的多項式利用十字相乘法分解因式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程,求出一次方程的解即可得到原方程的解;
②將方程整理為一般形式,將方程左邊的多項式利用十字相乘法分解因式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程,求出一次方程的解即可得到原方程的解.
點評:此題考查了解一元二次方程-因式分解法,利用此方法解方程時,首先將方程右邊化為0,左邊化為積的形式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.