【題目】在△ABC中,AB=AC,∠BAC=60°,點E為直線AC上一點,D為直線BC上的一點,且DA=DE. 當點D在線段BC上時,如圖①,易證:BD+AB=AE;
當點D在線段CB的延長線上時,如圖②、圖③,猜想線段BD,AB和AE之間又有怎樣的數(shù)量關系?寫出你的猜想,并選擇一種情況給予證明.
【答案】解;如圖②中,
結論:BD+AE=AB.
理由:作EM∥AB交BC于M,
∵△ABC是等邊三角形,
∴∠ABC=∠C=∠BAC=60°,AB=BC=AC,
∴∠CEM=∠CAB=60°,∠CME=∠CBA=60°,
∴△CME是等邊三角形,
∴CE=CM=EM,∠EMC=60°,
∴AE=BM,
∵DA=DE,
∴∠DAE=∠DEA,
∴∠BAC+∠DAB=∠C+∠EDM,
∴∠DAB=∠EDM,
∵∠ABD=180°﹣∠ABC=120°,∠EMD=180°﹣∠EMC=120°,
∴∠ABD=∠DME,
在△ABD和△DEM中,
,
∴△ABD≌△DEM,
∴DB=EM=CM,
∴DB+AE=CM+BM=BC=AB.
如圖③中,
結論:BD﹣AE=AB.
理由:作EM∥AB交BC于M,
∵△ABC是等邊三角形,
∴∠ABC=∠C=∠BAC=60°,AB=BC=AC,
∴∠CEM=∠CAB=60°,∠CME=∠CBA=60°,
∴△CME是等邊三角形,
∴CE=CM=EM,∠EMC=∠MEC=60°,
∴AE=BM,
∵DA=DE,
∴∠DAE=∠DEA,
∴∠C+∠ADC=∠MEC+∠EDDEM,
∴∠ADB=∠DEM,
∵∠ABD=180°﹣∠ABC=120°,∠EMD=180°﹣∠EMC=120°,
∴∠ABD=∠DME,
在△ABD和△DEM中,
,
∴△ABD≌△DME,
∴DB=EM=CM,
∴DB﹣AE=CM﹣BM=BC=AB.
【解析】圖②中,論:BD+AE=AB,作EM∥AB交BC于M,先證明△EMC是等邊三角形得CE=CM,AE=BM,再證明△ABD≌△DEM,得DB=EM=MC由此可以對稱結論.圖③中,結論:BD﹣AE=AB,證明方法類似.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,10個邊長為1的正方形如圖擺放在平面直角坐標系中,經過原點的一條直線l將這10個正方形分成面積相等的兩部分,則該直線l的解析式為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4cm,動點P、Q同時從點A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點C運動,設運動時間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間函數(shù)關系可以用圖象表示為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將斜邊長為2個等腰直角三角形按如圖所示的位置擺放,得到一條折線O﹣A﹣B﹣C﹣D…,點P從點O出發(fā)沿著折線以每秒 的速度向右運動,2016秒時,點P的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展以感恩教育為主題的藝術活動,舉辦了四個項目的比賽,它們分別是演講、唱歌、書法、繪畫.要求每位同學必須參加,且限報一項活動.以九年級(1)班為樣本進行統(tǒng)計,并將統(tǒng)計結果繪成如圖1、圖2所示的兩幅統(tǒng)計圖.請你結合圖示所給出的信息解答下列問題.
(1)求出參加繪畫比賽的學生人數(shù)占全班總人數(shù)的百分比?
(2)求出扇形統(tǒng)計圖中參加書法比賽的學生所在扇形圓心角的度數(shù)?
(3)若該校九年級學生有600人,請你估計這次藝術活動中,參加演講和唱歌的學生各有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠CAB=65°,在同一平面內,將△ABC繞點A旋轉到△AED的位置,使得DC∥AB,則∠BAE等于( )
A.30°
B.40°
C.50°
D.60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關于該二次函數(shù),下列說法錯誤的是( )
A.函數(shù)有最小值
B.對稱軸是直線x=
C.當x< ,y隨x的增大而減小
D.當﹣1<x<2時,y>0
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com