△ABC的內(nèi)切圓⊙O與BC,CA,AB分別相切于點D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的長.

【答案】分析:根據(jù)切線長定理,可設AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.再根據(jù)題意列方程組,即可求解.
解答:解:根據(jù)切線長定理,設AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.
根據(jù)題意,得
,
解,得

即AF=4cm、BD=5cm、CE=9cm.
點評:此題要熟練運用切線長定理.
注意解方程組的簡便方法:三個方程相加,得到x+y+z的值,再進一步用減法求得x,y,z的值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O為△ABC的內(nèi)切圓,∠C=90度,OA的延長線交BC于點D,AC=4,CD=1,則⊙O的半徑等于( 。
A、
4
5
B、
5
4
C、
3
4
D、
5
6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

⊙O是△ABC的內(nèi)切圓,且∠C=90°,切點為D,E,F(xiàn),若AF,BE的長是方程x2-13x+30=0的兩個根,則S△ABC的值為( 。
A、30B、15C、60D、13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,等腰△ABC中,AE是底邊BC上的高,點O在AE上,⊙O與AB和BC分別相切.
(1)⊙O是否為△ABC的內(nèi)切圓?請說明理由.
(2)若AB=5,BC=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,⊙I為△ABC的內(nèi)切圓,AB=9,BC=8,AC=10,點D、E分別為AB、AC上的點,且DE為⊙I的切線,則△ADE的周長為
11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•長寧區(qū)一模)如圖,已知Rt△ABC中,∠ACB=90°,⊙O 是Rt△ABC的內(nèi)切圓,其半徑為1,E、D是切點,∠BOC=105°.求AE的長.

查看答案和解析>>

同步練習冊答案