已知直線,直線分別交于、兩點(diǎn),點(diǎn)是直線上的一動(dòng)點(diǎn)
如圖,若動(dòng)點(diǎn)在線段之間運(yùn)動(dòng)(不與、兩點(diǎn)重合),問(wèn)在點(diǎn)的運(yùn)動(dòng)過(guò)程中是否始終具有這一相等關(guān)系?試說(shuō)明理由;
如圖,當(dāng)動(dòng)點(diǎn)在線段之外且在的上方運(yùn)動(dòng)(不與、兩點(diǎn)重合),則上述結(jié)論是否仍成立?若不成立,試寫(xiě)出新的結(jié)論,并說(shuō)明理由;
(1)∠3+∠1=∠2成立,理由見(jiàn)解析;(2)∠3+∠1=∠2不成立,新的結(jié)論為∠3-∠1=∠2.

試題分析:(1)相等關(guān)系成立.過(guò)點(diǎn)P作PE∥l1,則有∠1=∠APE,又因?yàn)镻E∥l2,又有∠3=∠BPE,因?yàn)椤螧PE+∠APE=∠2,所以∠3+∠1=∠2;
(2)原關(guān)系不成立,過(guò)點(diǎn)P作PE∥l1,則有∠1=∠APE;又因?yàn)镻E∥l2,又有∠3=∠BPE,困為此時(shí)∠BPE-∠APE=∠2,則有∠3-∠1=∠2.
(1)∠3+∠1=∠2成立.
理由如下:
過(guò)點(diǎn)P作PE∥l1,
∴∠1=∠APE;
∵l1∥l2,
∴PE∥l2,
∴∠3=∠BPE;
又∵∠BPE+∠APE=∠2,
∴∠3+∠1=∠2.

(2)∠3+∠1=∠2不成立,新的結(jié)論為∠3-∠1=∠2.
理由如下:
過(guò)點(diǎn)P作PE∥l1,
∴∠1=∠APE;
∵l1∥l2,
∴PE∥l2,
∴∠3=∠BPE;
又∵∠BPE-∠APE=∠2,
∴∠3-∠1=∠2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,直線AB與直線BC相交于點(diǎn)B,點(diǎn)D是直線BC上一點(diǎn),求作:點(diǎn)E,使直線DE∥AB,且點(diǎn)E到B、D兩點(diǎn)的距離相等.(尺規(guī)作圖,要求在題目的原圖中完成作圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線AB∥CD,∠GEB的平分線EF交CD與點(diǎn)F,∠HGF=40°,求∠EFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)角是54°33′,則這個(gè)角的補(bǔ)角與余角的差為_(kāi)____   °。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,∠1與∠2是對(duì)頂角的是(    )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,把一塊含有45°的直角三角形的兩個(gè)頂點(diǎn)放在直尺的對(duì)邊上.如果∠1=20°,那么∠2的度數(shù)是( )
A.15°B.20°C.25°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直線a∥b,∠1=125°,則∠2=   °

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,以∠AOB的頂點(diǎn)O為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于CD的長(zhǎng)為半徑畫(huà)弧,兩弧在∠AOB內(nèi)部交于點(diǎn)E,過(guò)點(diǎn)E作射線OE,連接CD.則下列說(shuō)法錯(cuò)誤的是

A.射線OE是∠AOB的平分線
B.△COD是等腰三角形
C.C、D兩點(diǎn)關(guān)于OE所在直線對(duì)稱(chēng)
D.O、E兩點(diǎn)關(guān)于CD所在直線對(duì)稱(chēng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,已知AB∥CD,OE平分∠BOC,OF⊥OE,∠B=60°,則∠DOF的度數(shù)是(    )
A.25°B.30°C.35°D.40°

查看答案和解析>>

同步練習(xí)冊(cè)答案