【題目】甲地有42噸貨物要運到乙地,有大、小兩種貨車可供選擇,具體收費情況如表:
類型 | 載重量(噸) | 運費(元/車) |
大貨車 | 8 | 450 |
小貨車 | 5 | 300 |
運完這批貨物最少要支付運費_____元.
【答案】2400
【解析】
直接利用二元一次方程組的解分析得出答案.
設(shè)租用大貨車x輛,小貨車y輛,由題意得:
8x+5y=42,
整數(shù)解為: ,此時運費為:4×450+2×300=2400(元),
當(dāng)x=6時,y=0,此時運費為:6×450=2700(元),
當(dāng)x=5時,y=1(此車沒裝滿),此時運費為:5×450+1×300=2550(元),
當(dāng)x=3時,y=4(有一輛車沒裝滿),此時運費為:3×450+4×300=2550(元),
當(dāng)x=2時,y=6(有一輛車沒裝滿),此時運費為:2×450+6×300=2700(元),
故運完這批貨物最少要支付運費是2400元.
故答案為:2400.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。
(1)求證:方程恒有兩個不相等的實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,OD∥BC交⊙D于點D,交AC于點E,連接AD,BD,CD若AB=10,cos∠ABC=,則tan∠DBC的值是( )
A.B.C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在地面上有兩根等長的立柱AB,CD,它們之間懸掛了一根拋物線形狀的繩子,按照圖中的直角坐標(biāo)系,這條繩子可以用表示
求這條繩子最低點離地面的距離;
現(xiàn)由于實際需要,要在兩根立柱之間再加一根立柱EF對繩子進行支撐如圖,已知立柱EF到AB距離為3m,兩旁的繩子也是拋物線形狀,且立柱EF左側(cè)繩子的最低點到EF的距離為1m,到地面的距離為1.8m,求立柱EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD=CD,以AB為直徑的⊙O經(jīng)過點C,連接AC,OD交于點E.
(1)證明:OD∥BC;
(2)若AD是⊙O的切線,連接BD交于⊙O于點F,連接EF,且OA=1,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查A、B兩個區(qū)的初三學(xué)生體育測試成績,從兩個區(qū)各隨機抽取了1000名學(xué)生的成績(滿分:40分,個人成績四舍五入向上取整數(shù))
A區(qū)抽樣學(xué)生體育測試成績的平均分、中位數(shù)、眾數(shù)如下:
平均分 | 中位數(shù) | 眾數(shù) |
37 | 36 | 37 |
B區(qū)抽樣學(xué)生體育測試成績的分布如下:
成績 | 28≤x<31 | 31≤x<34 | 34≤x<37 | 37≤x<40 | 40(滿分) |
人數(shù) | 60 | 80 | 140 | m | 220 |
請根據(jù)以上信息回答下列問題
(1)m= ;
(2)在兩區(qū)抽樣的學(xué)生中,體育測試成績?yōu)?/span>37分的學(xué)生,在 (填“A”或“B”)區(qū)被抽樣學(xué)生中排名更靠前,理由是 ;
(3)如果B區(qū)有10000名學(xué)生參加此次體育測試,估計成績不低于34分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在 10×6 的正方形網(wǎng)格中,每個小正方形的邊長均為 1,線段 AB 的端點 A、B 均在小正方形的頂點上.
(1)在圖中畫出以 AB 為一腰的等腰△ABC,點 C 在小正方形頂點上,△ABC 為鈍角三角形,且△ABC 的面積為;
(2)在圖中畫出以 AB 為斜邊的直角三角形 ABD, 點 D在小正方形的頂點上,且 AD>BD;
(3)連接 CD,請你直接寫出線段 CD 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線頂點A在x軸負(fù)半軸上,與y軸交于點B,OB=1,△OAB為等腰直角三角形
(1)求拋物線的解析式
(2)若點C在拋物線上,若△ABC為直角三角形,求點C的坐標(biāo)
(3)已知直線DE過點(-1,-4),交拋物線于點D、E,過D作DF∥x軸,交拋物線于點F,求證:直線EF經(jīng)過一個定點,并求定點的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,點O是坐標(biāo)原點,拋物線y=ax2+x+c與x軸交于A、B兩點,點B的坐標(biāo)為(4,0),與y軸交于點C,直線y=kx+2經(jīng)過A、C兩點.
(1)如圖1,求a、c的值;
(2)如圖2,點P為拋物線y=ax2+x+c在第一象限的圖象上一點,連接AP、CP,設(shè)點P的橫坐標(biāo)為t,△ACP的面積為S,求S與t的函數(shù)解析式,并直接寫出自變量t的取值范圍;
(3)在(2)的條件下,點D為線段AC上一點,直線OD與直線BC交于點E,點F是直線OD上一點,連接BP、BF、PF、PD,BF=BP,∠FBP=90°,若OE=,求直線PD的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com