【題目】書店舉行購書優(yōu)惠活動:
①一次性購書不超過100元,不享受打折優(yōu)惠;
②一次性購書超過100元但不超過200元一律打九折;
③一次性購書200元一律打七折.
小麗在這次活動中,兩次購書總共付款229.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是元.
【答案】248或296
【解析】解:設第一次購書的原價為x元,則第二次購書的原價為3x元,
依題意得:①當0<x≤ 時,x+3x=229.4,
解得:x=57.35(舍去);
②當 <x≤ 時,x+ ×3x=229.4,
解得:x=62,
此時兩次購書原價總和為:4x=4×62=248;
③當 <x≤100時,x+ ×3x=229.4,
解得:x=74,
此時兩次購書原價總和為:4x=4×74=296.
綜上可知:小麗這兩次購書原價的總和是248或296元.
故答案為:248或296.
設第一次購書的原價為x元,則第二次購書的原價為3x元.根據x的取值范圍分段考慮,根據“付款金額=第一次付款金額+第二次付款金額”即可列出關于x的一元一次方程,解方程即可得出結論.本題考查了一元一次方程的應用,解題的關鍵是分段考慮,結合熟練關系找出每段x區(qū)間內的關于x的一元一次方程.本題屬于基礎題,難度不大,解決該題型題目時,根據數量關系列出方程(或方程組)是關鍵.
科目:初中數學 來源: 題型:
【題目】如圖(1),E是正方形ABCD的邊BC上的一個點(E與B、C兩點不重合),過點E作射線EP⊥AE,在射線EP上截取線段EF,使得EF=AE;過點F作FG⊥BC交BC的延長線于點G.
(1)求證:FG=BE;
(2)連接CF,如圖(2),求證:CF平分∠DCG;
(3)當 = 時,求sin∠CFE的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,
(1)證明四邊形ABDF是平行四邊形;
(2)若AF=DF=5,AD=6,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某高校學生會發(fā)現(xiàn)同學們就餐時剩余飯菜較多,浪費嚴重,于是準備在校內倡導“光盤行動”,讓同學們珍惜糧食,為了讓同學們理解這次活動的重要性,校學生會在某天午餐后,隨機調查了部分同學這餐飯菜的剩余情況,并將結果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.
(1)這次被調查的同學共有名;
(2)把條形統(tǒng)計圖補充完整;
(3)校學生會通過數據分析,估計這次被調查的所有學生一餐浪費的食物可以供200人用一餐.據此估算,該校18 000名學生一餐浪費的食物可供多少人食用一餐?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,△ABE和△ADC是△ABC分別沿著AB,AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數為( )
A.80°
B.100°
C.60°
D.45°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在兩建筑物之間有一旗桿,高15米,從A點經過旗桿頂點恰好看到矮建筑物的墻角C點,且俯角α為60°,又從A點測得D點的俯角β為30°,若旗桿底總G為BC的中點,則矮建筑物的高CD為( )
A.20米
B.米
C.米
D.米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,P為AB上的一點,在下列四個條件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=APAB;④ABCP=APCB,能滿足△APC和△ACB相似的條件是( 。
A.①②④
B.①③④
C.②③④
D.①②③
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com