【題目】如圖,O為直線AB上一點,∠COE=90° ,OF 平分∠AOE,
(1)若∠BOE=80°,求∠COF的度數(shù).
(2)若∠COF=α(0°<α<90°),則∠BOE= (用含α的式子表示) .
【答案】(1)40o;(2) 2α
【解析】
(1)根據(jù)∠BOE的度數(shù)可求出∠AOE,然后利用角平分線的定義求出∠EOF,再根據(jù)∠COE=90°可得答案;
(2)根據(jù)∠COE=90°求出∠EOF,然后利用角平分線的定義求出∠AOE,再根據(jù)平角的定義求出∠BOE即可.
解:(1)∵∠BOE=80°,
∴∠AOE=180°-80°=100°,
∵OF平分∠AOE,
∴∠EOF=∠AOE=50°,
∵∠COE=90°,
∴∠COF=∠COE-∠EOF=90°-50°=40°;
(2)∵∠COF=α,
∴∠EOF=90°-α,
∵OF平分∠AOE,
∴∠AOE=2∠EOF=180°-2α,
∴∠BOE=180°-∠AOE=180°-(180°-2α)=2α.
科目:初中數(shù)學 來源: 題型:
【題目】每年5月的第二個星期日即為母親節(jié),“父母恩深重,恩憐無歇時”,許多市民喜歡在母親節(jié)為母親送鮮花,感恩母親,祝福母親. 節(jié)日前夕,某花店采購了一批鮮花禮盒,成本價為30元每件,分析上一年母親節(jié)的鮮花禮盒銷售情況,得到了如下數(shù)據(jù),同時發(fā)現(xiàn)每天的銷售量(件)是銷售單價(元/件)的一次函數(shù).
銷售單價 (元/件) | … | 30 | 40 | 50 | 60 | … |
每天銷售量 (件) | … | 350 | 300 | 250 | 200 | … |
(1)求出與的函數(shù)關(guān)系;
(2)物價局要求,銷售該鮮花禮盒獲得的利潤不得高于100﹪:
①當銷售單價取何值時,該花店銷售鮮花禮盒每天獲得的利潤為5000元?(利潤=銷售總價-成本價);
②試確定銷售單價取何值時,花店銷該鮮花禮盒每天獲得的利潤(元)最大?并求出花店銷該鮮花禮盒每天獲得的最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°,求這兩座建筑物的高度(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB:y=﹣x﹣b分別與x、y軸交于A(6,0)、B兩點.
(1)求直線AB的解析式;
(2)若P為A點右側(cè)x軸上的一動點,以P為直角頂點,BP為腰在第一象限內(nèi)作等腰直角△BPQ,連接QA并延長交y軸于點K,當P點運動時,K點的位置是否發(fā)生變化?若不變,請求出它的坐標;如果變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一個幾何體的形狀為直三棱柱,右圖是它的主視圖和左視圖.
(1)請補畫出它的俯視圖,并標出相關(guān)數(shù)據(jù);
(2)根據(jù)圖中所標的尺寸(單位:厘米),計算這個幾何體的全面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線()交軸于點,交軸于點.
(1)求點的坐標(用含的代數(shù)式表示)
(2)若點是直線上的任意一點,且點與點距離的最小值為4,求該直線表達式;
(3)在(2)的基礎(chǔ)上,若點在第一象限,且為等腰直角三角形,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某數(shù)學興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達B點,在B處測得樹頂C的仰角高度為60°(A、B、D三點在同一直線上).請你根據(jù)他們測量數(shù)據(jù)計算這棵樹CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)
【答案】8.7米
【解析】試題分析:首先利用三角形的外角的性質(zhì)求得∠ACB的度數(shù),得到BC的長度,然后在直角△BDC中,利用三角函數(shù)即可求解.
試題解析:∵∠CBD=∠A+∠ACB,
∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,
∴∠A=∠ACB,
∴BC=AB=10(米).
在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).
答:這棵樹CD的高度為8.7米.
考點:解直角三角形的應用
【題型】解答題
【結(jié)束】
23
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點,點P是拋物線上在第一象限內(nèi)的一點,直線BP與y軸相交于點C.
(1)求拋物線y=﹣x2+ax+b的解析式;
(2)當點P是線段BC的中點時,求點P的坐標;
(3)在(2)的條件下,求sin∠OCB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=x經(jīng)過點A,作AB⊥x軸于點B,將△ABO繞點B逆時針旋轉(zhuǎn)60°得到△CBD.若點B的坐標為(2,0),則點C的坐標為( 。
A. (﹣1,) B. (﹣2,) C. (﹣,1) D. (﹣,2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com