如圖,以Rt△ABC為直徑分別向外作半圓,若S1=10,S3=8,則S2=


  1. A.
    2
  2. B.
    6
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:根據(jù)勾股定理,得:AB2+BC2=AB2,再根據(jù)圓面積公式,可以證明:S1+S2=S3.即S2=10-8=2.
解答:∵AB2+BC2=AB2,S1=•π(2=;
S2=π(2=
S3=π(2=;
S2+S3=+=(AB2+BC2)==S1
故S2=S1-S3=10-8=2.
故選A.
點(diǎn)評(píng):注意根據(jù)圓面積公式結(jié)合勾股定理證明:S1+S2=S3,即直角三角形中,以直角邊為直徑的兩個(gè)半圓面積的和等于以斜邊為直徑的半圓面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,以Rt△ABC的直角邊AB為直徑的半圓O,與斜邊AC交于D,E是BC邊上的中點(diǎn),連接ED、BD.
(1)求證:△ABC∽△BCD
(2)DE與半圓O相切嗎?若相切,請(qǐng)給出證明;若不相切,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,以Rt△ABC各邊為直徑的三個(gè)半圓圍成兩個(gè)新月形(陰影部分),已知AC=3cm,BC=4cm.則新月形(陰影部分)的面積和是
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,以Rt△ABC的斜邊AB為直徑作⊙0,D是BC上的點(diǎn),且有弧AC=弧CD,連CD、BD,在BD延長(zhǎng)線上取一點(diǎn)E,使∠DCE=∠CBD.
(1)求證:CE是⊙0的切線;
(2)若CD=2
5
,DE和CE的長(zhǎng)度的比為
1
2
,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以Rt△ABC的直角邊AC為直徑作圓O交斜邊AB于點(diǎn)D,若劣弧CD=120°,則
BDAD
=
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•黔南州)如圖,以Rt△ABC的直角邊AB為直徑的半圓O,與斜邊AC交于D,E是BC邊上的中點(diǎn),連接DE.
(1)DE與半圓0是否相切?若相切,請(qǐng)給出證明;若不相切,請(qǐng)說明理由;
(2)若AD、AB的長(zhǎng)是方程x2-16x+60=0的兩個(gè)根,求直角邊BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案