已知△ABC是等腰直角三角形,∠A=90°,點D是腰AC上的一個動點,過C作CE垂直于BD的延長線,垂足為E.

(1)若BD是AC邊上的中線,如圖1,求的值;
(2)若BD是∠ABC的角平分線,如圖2,求的值.

(1);(2)2.

解析試題分析:設(shè)AB=AC=1,CD=x,應(yīng)用勾股定理和相似三角形的判定和性質(zhì),把用x來表示,
(1)若BD是AC的中線,則CD=AD,據(jù)此求出的值;
(2)若BD是∠ABC的角平分線,則由Rt△ABD∽Rt△EBC得,據(jù)此求出的值.
試題解析:設(shè)AB=AC=1,CD=x,則0<x≤1,BC=,AD=1-x.
在Rt△ABD中,BD2=AB2+AD2=1+(1-x)2=x2-2x+2.
由已知可得Rt△ABD∽Rt△ECD,
,即,∴.
,0<x≤1.
(1)若BD是AC的中線,則CD=AD=x=,得.
(2)若BD是∠ABC的角平分線,則Rt△ABD∽Rt△EBC,
,得,即,解得,.
.
考點:1.動點問題;2.等腰直角三角形的性質(zhì);3.勾股定理;4.相似三角形的判定和性質(zhì);5.三角形中線和角平分線的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC的頂點坐標(biāo)分別為A(1,3)、B(4,2)、C(2,1).

(1)作出與△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標(biāo);
(2)以原點O為位似中心,在原點的另一側(cè)畫出△A2B2C2,使,并寫出點A2的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖9,在△ABC中,已知點D在BC上,聯(lián)結(jié)AD,使得,DC=3且 ﹦1﹕2.

(1)求AC的值;
(2)若將△ADC沿著直線AD翻折,使點C落點E處,AE交邊BC于點F,且AB∥DE,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,網(wǎng)格圖的每個小正方形邊長均為1.△OAB的頂點均在格點上.已知△與△OAB是以O(shè)為位似中心的位似圖形,且位似比為1︰3.

(1)請在第一象限內(nèi)畫出△;
(2)試求出△的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在邊長為1的正方形網(wǎng)格中有兩個三角形△ABC和△DEF,試證這兩個三角形相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,△ABC和△是以坐標(biāo)原點O為位似中心的位似圖形,且點B(3,1),B′(6,2).

(1)請你根據(jù)位似的特征并結(jié)合點B的坐標(biāo)變化回答下列問題: ①若點A(,3),則A′的坐標(biāo)為         ;②△ABC與△的相似比為        ;
(2)若△ABC的面積為m,求△A′B′C′的面積.(用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,以點M(1,-1)為圓心,以為半徑作圓,與x軸交于A、B兩點,與y軸交于C、D兩點,二次函數(shù)的圖象經(jīng)過點A、B、C,頂點為E.

(1)求此二次函數(shù)的表達(dá)式;
(2)設(shè)∠DBC=a,∠CBE=b,求sin(a-b)的值;
(3)坐標(biāo)軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCE相似.若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在邊長為6的菱形ABCD中,動點M從點A出發(fā),沿A→B→C向終點C運(yùn)動,連接DM交AC于點N.
(1)如圖1,當(dāng)點M在AB邊上時,連接BN

①試說明:;
②若∠ABC=60°,AM=4,求點M到AD的距離.
(2)如圖2,若∠ABC=90°,記點M運(yùn)動所經(jīng)過的路程為x(6≤x≤12).試問:x為何值時,△ADN為等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案